File size: 40,733 Bytes
e17c9f2
 
 
 
 
 
 
 
 
 
 
a6a5155
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8709b2
 
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
a6a5155
 
 
 
 
 
 
 
 
 
02069d7
a6a5155
 
 
 
 
 
 
 
 
 
e17c9f2
 
c8709b2
 
e17c9f2
 
 
 
 
 
 
 
 
 
c8709b2
 
 
 
 
 
e17c9f2
 
 
de0c71d
e17c9f2
de0c71d
 
a6a5155
 
e17c9f2
a6a5155
 
e17c9f2
c8709b2
 
 
 
c9fbbef
c8709b2
 
 
 
 
 
 
e17c9f2
 
c8709b2
 
 
 
 
 
e17c9f2
 
 
c8709b2
 
 
 
 
 
 
 
 
e17c9f2
02069d7
 
 
 
 
 
e17c9f2
02069d7
 
 
e17c9f2
 
 
 
 
 
 
 
 
69e60be
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
c8709b2
e17c9f2
c8709b2
e17c9f2
02069d7
e17c9f2
 
 
c8709b2
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8709b2
e17c9f2
c8709b2
 
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
8a27036
b926e53
8a27036
 
 
69e60be
 
e17c9f2
 
 
 
 
 
8a27036
 
 
e17c9f2
 
 
 
 
 
 
8a27036
 
e17c9f2
 
c8709b2
 
 
 
 
 
 
 
 
e17c9f2
 
 
 
 
 
 
 
 
a6a5155
c8709b2
 
e17c9f2
c8709b2
e17c9f2
 
c8709b2
a6a5155
e17c9f2
 
c8709b2
e17c9f2
a6a5155
c8709b2
a6a5155
 
e17c9f2
 
c8709b2
e17c9f2
c8709b2
a6a5155
e17c9f2
 
c8709b2
 
 
 
 
 
 
 
e17c9f2
 
c8709b2
e17c9f2
c8709b2
a6a5155
 
c8709b2
e17c9f2
c8709b2
 
e17c9f2
 
 
 
 
 
 
 
 
c8709b2
e17c9f2
 
 
 
 
 
 
 
c8709b2
 
 
 
 
 
e17c9f2
 
 
 
 
 
 
 
 
c8709b2
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8709b2
 
 
e17c9f2
 
 
c8709b2
e17c9f2
c8709b2
e17c9f2
 
 
c8709b2
e17c9f2
c8709b2
e17c9f2
 
 
c8709b2
 
 
 
 
 
e17c9f2
c8709b2
e17c9f2
 
c8709b2
 
e17c9f2
c8709b2
e17c9f2
 
c8709b2
 
e17c9f2
c8709b2
e17c9f2
 
c8709b2
e17c9f2
 
 
c8709b2
e17c9f2
 
 
 
 
 
 
 
 
c8709b2
 
e17c9f2
 
c8709b2
e17c9f2
c8709b2
e17c9f2
 
c8709b2
e17c9f2
 
c8709b2
e17c9f2
 
 
c8709b2
e17c9f2
c8709b2
e17c9f2
 
c8709b2
 
 
 
 
 
e17c9f2
c8709b2
e17c9f2
 
c8709b2
e17c9f2
c8709b2
 
e17c9f2
 
 
 
 
 
 
c8709b2
e17c9f2
c8709b2
e17c9f2
 
de0c71d
e17c9f2
de0c71d
c8709b2
e17c9f2
 
 
 
 
 
 
 
c8709b2
e17c9f2
 
 
 
 
 
 
 
c8709b2
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
c8709b2
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8709b2
e17c9f2
 
 
 
 
c8709b2
 
 
 
 
 
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8709b2
 
 
 
 
 
e17c9f2
 
 
 
 
c8709b2
 
 
 
 
 
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8709b2
 
 
 
 
 
e17c9f2
c8709b2
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0c71d
 
e17c9f2
 
c8709b2
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
b926e53
e17c9f2
b926e53
e17c9f2
c8709b2
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8709b2
e17c9f2
 
 
 
 
 
 
 
 
c8709b2
e17c9f2
c8709b2
 
 
 
 
 
 
 
 
 
 
 
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
c8709b2
e17c9f2
c8709b2
 
e17c9f2
 
 
 
 
c8709b2
e17c9f2
 
 
 
 
c8709b2
e17c9f2
 
 
c8709b2
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0c71d
 
e17c9f2
 
c8709b2
 
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88253fe
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b926e53
e17c9f2
c8709b2
 
e17c9f2
 
 
 
 
c8709b2
e17c9f2
 
 
 
 
 
 
 
 
c8709b2
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0c71d
 
e17c9f2
 
 
c8709b2
b926e53
e17c9f2
c8709b2
 
e17c9f2
 
 
c8709b2
 
 
 
02069d7
e17c9f2
 
c8709b2
e17c9f2
 
c8709b2
e17c9f2
c8709b2
 
 
 
 
 
e17c9f2
 
 
 
 
c8709b2
 
 
 
e17c9f2
 
c8709b2
e17c9f2
 
 
 
 
 
 
c8709b2
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0c71d
e17c9f2
c8709b2
 
e17c9f2
de0c71d
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
de0c71d
c8709b2
de0c71d
e17c9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6a5155
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
import torch
import itertools
import threading
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from collections import Counter, defaultdict
from loguru import logger
from abc import ABCMeta, abstractmethod
from .paper_client import PaperClient
from .paper_crawling import PaperCrawling
from .llms_api import APIHelper
from .hash import get_embedding_model


class UnionFind:
    def __init__(self, n):
        self.parent = list(range(n))
        self.rank = [1] * n

    def find(self, x):
        if self.parent[x] != x:
            self.parent[x] = self.find(self.parent[x])
        return self.parent[x]

    def union(self, x, y):
        rootX = self.find(x)
        rootY = self.find(y)
        if rootX != rootY:
            if self.rank[rootX] > self.rank[rootY]:
                self.parent[rootY] = rootX
            elif self.rank[rootX] < self.rank[rootY]:
                self.parent[rootX] = rootY
            else:
                self.parent[rootY] = rootX
                self.rank[rootX] += 1


def can_merge(uf, similarity_matrix, i, j, threshold):
    """Condition of i and j can be merged: After merging, the similarity of any two nodes 
    from root_i and root_j are larger than threshold
    """
    root_i = uf.find(i)
    root_j = uf.find(j)
    for k in range(len(similarity_matrix)):
        if uf.find(k) == root_i or uf.find(k) == root_j:
            if (
                similarity_matrix[i][k] < threshold
                or similarity_matrix[j][k] < threshold
            ):
                return False
    return True


class CoCite:
    _instance = None
    _initialized = False

    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = super(CoCite, cls).__new__(cls)
        return cls._instance

    def __init__(self) -> None:
        if not self._initialized:
            logger.debug("init co-cite map begin...")
            self.paper_client = PaperClient()
            citemap = self.paper_client.build_citemap()
            self.comap = defaultdict(lambda: defaultdict(int))
            for paper_id, cited_id in citemap.items():
                for id0, id1 in itertools.combinations(cited_id, 2):
                    # ensure comap[id0][id1] == comap[id1][id0]
                    self.comap[id0][id1] += 1
                    self.comap[id1][id0] += 1
            logger.debug("init co-cite map success")
            CoCite._initialized = True

    def get_cocite_ids(self, id_, k=1):
        """
        """
        sorted_items = sorted(self.comap[id_].items(), key=lambda x: x[1], reverse=True)
        top_k = sorted_items[:k]
        paper_ids = []
        for item in top_k:
            paper_ids.append(item[0])
        paper_ids = self.paper_client.filter_paper_id_list(paper_ids)
        return paper_ids


class Retriever(object):
    """The superclass of all retrievers
    Args:
        config: 
    Returns:
        A Retriever instance
    """
    __metaclass__ = ABCMeta
    retriever_name = "BASE"

    def __init__(self, config):
        self.config = config
        self.use_cocite = config.RETRIEVE.use_cocite
        self.use_cluster_to_filter = config.RETRIEVE.use_cluster_to_filter
        self.paper_client = PaperClient()
        self.cocite = CoCite()
        self.api_helper = APIHelper(config=config)
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.embedding_model = get_embedding_model(config)
        self.paper_crawling = PaperCrawling(config=config)
        if self.config.DEFAULT.embedding == "sentence-transformers/all-MiniLM-L6-v2":
            self.embedding_postfix = ""
        elif self.config.DEFAULT.embedding == "BAAI/llm-embedder":
            self.embedding_postfix = "_llm_embedder"
        elif self.config.DEFAULT.embedding == "jinaai/jina-embeddings-v3":
            self.embedding_postfix = "_jina_v3"
            if self.config.DEFAULT.embedding_database == "text-matching":
                self.embedding_postfix += "_text_matching"
            elif self.config.DEFAULT.embedding_database == "retrieval.query":
                self.embedding_postfix += "_query"
            elif self.config.DEFAULT.embedding_database == "retrieval.passage":
                self.embedding_postfix += "_passage"
    @abstractmethod
    def retrieve(self, bg, entities, use_evaluate):
        """Retrieve papers, should be implemented by the sub-class
        Args:
            None
        Returns:
            None
        """
        pass

    def retrieve_entities_by_enties(self, entities):
        """The method do three things:
        1. Expand entities according to entities co-occurence
        2. Count the number of papers related to each expanded entity. Sort entities in terms of their occurence times in ascending order
        3. Initial new entities. Retrieve entities one by one until the number of related papers reach a threshold
        Args:
            entities: A List of entities, e.g., [str, str, ...]
        Returns:
            new_entities: A List of entities after expansion, e.g., [str, str, ...]
        """
        # TODO: KG
        expand_entities = self.paper_client.find_related_entities_by_entity_list(
            entities,
            n=self.config.RETRIEVE.kg_jump_num,
            k=self.config.RETRIEVE.kg_cover_num,
            relation_name=self.config.RETRIEVE.relation_name,
        )
        expand_entities = list(set(entities + expand_entities))
        entity_paper_num_dict = self.paper_client.get_entities_related_paper_num(
            expand_entities
        )
        new_entities = []
        entity_paper_num_dict = {
            k: v for k, v in entity_paper_num_dict.items() if v != 0
        }
        entity_paper_num_dict = dict(
            sorted(entity_paper_num_dict.items(), key=lambda item: item[1])
        )
        sum_paper_num = 0
        for key, value in entity_paper_num_dict.items():
            if sum_paper_num <= self.config.RETRIEVE.sum_paper_num:
                sum_paper_num += value
                new_entities.append(key)
            elif (
                value < self.config.RETRIEVE.limit_num
                and sum_paper_num < self.config.RETRIEVE.sum_paper_num
            ):
                sum_paper_num += value
                new_entities.append(key)
        return new_entities

    def update_related_paper(self, paper_id_list):
        """
        Args:
            paper_id_list (List of hash_id): e.g., [1231214, 46345]
        Return:
            related_paper (List of dict):
        """
        related_paper = self.paper_client.update_papers_from_client(paper_id_list)
        return related_paper

    def calculate_similarity(self, entities, related_entities_list, use_weight=False):
        """[Deprecated] Calculate the similarities between two lists of entities
        """
        if use_weight:
            vec1 = self.vectorizer.transform([" ".join(entities)]).toarray()[0]
            weighted_vec1 = np.array(
                [
                    vec1[i] * self.log_inverse_freq.get(word, 1)
                    for i, word in enumerate(self.vectorizer.get_feature_names_out())
                ]
            )
            vecs2 = self.vectorizer.transform(
                [
                    " ".join(related_entities)
                    for related_entities in related_entities_list
                ]
            ).toarray()
            weighted_vecs2 = np.array(
                [
                    [
                        vec2[i] * self.log_inverse_freq.get(word, 1)
                        for i, word in enumerate(
                            self.vectorizer.get_feature_names_out()
                        )
                    ]
                    for vec2 in vecs2
                ]
            )
            similarity = cosine_similarity([weighted_vec1], weighted_vecs2)[0]
        else:
            vec1 = self.vectorizer.transform([" ".join(entities)])
            vecs2 = self.vectorizer.transform(
                [
                    " ".join(related_entities)
                    for related_entities in related_entities_list
                ]
            )
            similarity = cosine_similarity(vec1, vecs2)[0]
        return similarity

    def cal_related_score(
        self, embedding, related_paper_id_list, type_name="background_embedding"
    ):
        """Calculate the cosine similarity between the input background's embedding and
        given list of papers
        Args:
            embedding: the embedding of the input background
            related_paper_id_list (List of int): the paper ids in the database
        Returns:
            Empty dict: {}
            Empty dict: {}
            score_all_dict: 
                paper_id1: score1,
                paper_id2: score2,
                ...
        """
        score_1 = np.zeros((len(related_paper_id_list)))
        # score_2 = np.zeros((len(related_paper_id_list)))
        origin_vector = torch.tensor(embedding).to(self.device).unsqueeze(0)
        context_embeddings = self.paper_client.get_papers_attribute(
            related_paper_id_list, type_name
        )
        if len(context_embeddings) > 0:
            context_embeddings = torch.tensor(context_embeddings).to(self.device)
            score_1 = torch.nn.functional.cosine_similarity(
                origin_vector, context_embeddings
            )
            score_1 = score_1.cpu().numpy()
            if self.config.RETRIEVE.need_normalize:
                score_1 = score_1 / np.max(score_1)
        score_all_dict = dict(zip(related_paper_id_list, score_1))
        # score_en_dict = dict(zip(related_paper_id_list, score_2))
        """
        score_all_dict = dict(
            zip(
                related_paper_id_list,
                score_1 * self.config.RETRIEVE.alpha
                + score_2 * self.config.RETRIEVE.beta,
            )
        )
        """
        return {}, {}, score_all_dict

    def filter_related_paper(self, score_dict, top_k):
        """Pick top_k papers from all retrieved papers in terms of score_dict. If clustering
        is not used, top_k papers with highest scores will be picked. If clustering is used,
        we will pick papers from each cluster in turn util top_k papers are chosen.
        Args:
            score_dict (dict): dict of (paper_id, similarity with user input background)
            top_k (int): pick top_k papers
        Returns:

        """
        if len(score_dict) <= top_k:
            return list(score_dict.keys())
        if not self.use_cluster_to_filter:
            paper_id_list = (
                list(score_dict.keys())[:top_k]
                if len(score_dict) >= top_k
                else list(score_dict.keys())
            )
            return paper_id_list
        else:
            ## Calculate the final embedding for each paper, which is the weighted average
            ## background_embedding (embedding), contribution_embedding, and summary_embedding.
            # clustering filter, ensure that each category the highest score save first
            # background embedding
            paper_id_list = list(score_dict.keys())
            paper_embedding_list = [
                self.paper_client.get_paper_attribute(paper_id, f"background_embedding{self.embedding_postfix}")
                for paper_id in paper_id_list
            ]
            paper_embedding = np.array(paper_embedding_list)
            # contribution embedding
            paper_embedding_list = [
                self.paper_client.get_paper_attribute(
                    paper_id, f"contribution_embedding{self.embedding_postfix}"
                )
                for paper_id in paper_id_list
            ]
            paper_contribution_embedding = np.array(paper_embedding_list)
            # summary embedding
            paper_embedding_list = [
                self.paper_client.get_paper_attribute(paper_id, f"summary_embedding{self.embedding_postfix}")
                for paper_id in paper_id_list
            ]
            paper_summary_embedding = np.array(paper_embedding_list)
            # abstract embedding
            paper_embedding_list = [
                self.paper_client.get_paper_attribute(paper_id, f"abstract_embedding{self.embedding_postfix}")
                for paper_id in paper_id_list
            ]
            paper_abstract_embedding = np.array(paper_embedding_list)

            weight_background = self.config.RETRIEVE.s_bg
            weight_contribution = self.config.RETRIEVE.s_contribution
            weight_summary = self.config.RETRIEVE.s_summary
            weight_abstract = self.config.RETRIEVE.s_abstract
            paper_embedding = (
                weight_background * paper_embedding
                + weight_contribution * paper_contribution_embedding
                + weight_summary * paper_summary_embedding
                + weight_abstract * paper_abstract_embedding
            )

            ## similarity_matrix of all retrieved papers
            similarity_matrix = np.dot(paper_embedding, paper_embedding.T)
            related_labels = self.cluster_algorithm(paper_id_list, similarity_matrix)
            related_paper_label_dict = dict(zip(paper_id_list, related_labels))
            label_group = {}
            for paper_id, label in related_paper_label_dict.items():
                if label not in label_group:
                    label_group[label] = []
                label_group[label].append(paper_id)
            paper_id_list = []
            # randomly pick a paper from each cluster in turn until top_k papers are chosen
            while len(paper_id_list) < top_k:
                for label, papers in label_group.items():
                    if papers:
                        paper_id_list.append(papers.pop(0))
                        if len(paper_id_list) >= top_k:
                            break
            return paper_id_list

    def cosine_similarity_search(self, embedding, k=1, type_name="background_embedding"):
        """Retrieve papers through embedding
        Args:
            embedding: the input embedding
        Returns:
            result (List of Papers): return related papers with the least embedding distance
        """
        result = self.paper_client.cosine_similarity_search(
            embedding, k, type_name=type_name
        )
        # backtrack: first is itself
        result = result[1:]
        return result

    def cluster_algorithm(self, paper_id_list, similarity_matrix):
        """
        """
        threshold = self.config.RETRIEVE.similarity_threshold
        uf = UnionFind(len(paper_id_list))
        # merge
        for i in range(len(similarity_matrix)):
            for j in range(i + 1, len(similarity_matrix)):
                if similarity_matrix[i][j] >= threshold:
                    if can_merge(uf, similarity_matrix, i, j, threshold):
                        uf.union(i, j)
        cluster_labels = [uf.find(i) for i in range(len(similarity_matrix))]
        return cluster_labels

    def eval_related_paper_in_all(self, score_all_dict, target_paper_id_list):
        score_all_dict = dict(
            sorted(score_all_dict.items(), key=lambda item: item[1], reverse=True)
        )
        result = {}
        related_paper_id_list = list(score_all_dict.keys())
        if len(related_paper_id_list) == 0:
            for k in self.config.RETRIEVE.top_k_list:
                result[k] = {"recall": 0, "precision": 0}
            return result, 0, 0, 0
        
        ## merge retrieved papers and target papers and clustering
        ## clustering according to the combination of background, contribution, and summary_embedding
        all_paper_id_set = set(related_paper_id_list)
        all_paper_id_set.update(target_paper_id_list)
        all_paper_id_list = list(all_paper_id_set)
        # get all target papers' background_embedding
        paper_embedding_list = [
            self.paper_client.get_paper_attribute(paper_id, f"background_embedding{self.embedding_postfix}")
            for paper_id in target_paper_id_list
        ]
        paper_embedding = np.array(paper_embedding_list)
        # get all target papers' contribution_embedding
        paper_embedding_list = [
            self.paper_client.get_paper_attribute(paper_id, f"contribution_embedding{self.embedding_postfix}")
            for paper_id in target_paper_id_list
        ]
        paper_contribution_embedding = np.array(paper_embedding_list)
        # get all target papers' summary_embedding
        paper_embedding_list = [
            self.paper_client.get_paper_attribute(paper_id, f"summary_embedding{self.embedding_postfix}")
            for paper_id in target_paper_id_list
        ]
        # abstract embedding
        paper_embedding_list = [
            self.paper_client.get_paper_attribute(paper_id, f"abstract_embedding{self.embedding_postfix}")
            for paper_id in target_paper_id_list
        ]
        paper_abstract_embedding = np.array(paper_embedding_list)

        paper_summary_embedding = np.array(paper_embedding_list)
        weight_background = self.config.RETRIEVE.s_bg
        weight_contribution = self.config.RETRIEVE.s_contribution
        weight_summary = self.config.RETRIEVE.s_summary
        weight_abstract = self.config.RETRIEVE.s_abstract
        # 2D matrix of size [# of target papers, embedding dimension]
        target_paper_embedding = (
            weight_background * paper_embedding
            + weight_contribution * paper_contribution_embedding
            + weight_summary * paper_summary_embedding
            + weight_abstract * paper_abstract_embedding
        )
        similarity_threshold = self.config.RETRIEVE.similarity_threshold
        similarity_matrix = np.dot(target_paper_embedding, target_paper_embedding.T)
        # return each target_paper's cluster label
        target_labels = self.cluster_algorithm(target_paper_id_list, similarity_matrix)
        target_paper_label_dict = dict(zip(target_paper_id_list, target_labels))
        logger.debug("Target paper cluster result: {}".format(target_paper_label_dict))
        logger.debug(
            {
                paper_id: self.paper_client.get_paper_attribute(paper_id, "title")
                for paper_id in target_paper_label_dict.keys()
            }
        )
        
        ## calculate the similarity between each two papers
        all_labels = []
        for paper_id in all_paper_id_list:
            # for each paper, get its background_embedding
            paper_bg_embedding = [
                self.paper_client.get_paper_attribute(paper_id, f"background_embedding{self.embedding_postfix}")
            ]
            paper_bg_embedding = np.array(paper_bg_embedding)
            # for each paper, get its contribution_embedding
            paper_contribution_embedding = [
                self.paper_client.get_paper_attribute(
                    paper_id, f"contribution_embedding{self.embedding_postfix}"
                )
            ]
            paper_contribution_embedding = np.array(paper_contribution_embedding)
            # for each paper, get its summary_embedding
            paper_summary_embedding = [
                self.paper_client.get_paper_attribute(paper_id, f"summary_embedding{self.embedding_postfix}")
            ]
            paper_summary_embedding = np.array(paper_summary_embedding)
            # for each paper, get its abstract_embedding
            paper_abstract_embedding = [
                self.paper_client.get_paper_attribute(paper_id, f"abstract_embedding{self.embedding_postfix}")
            ]
            paper_abstract_embedding = np.array(paper_abstract_embedding)
            
            paper_embedding = (
                weight_background * paper_bg_embedding
                + weight_contribution * paper_contribution_embedding
                + weight_summary * paper_summary_embedding
                + weight_abstract * paper_abstract_embedding
            )

            # vector of size embedding dimension
            similarities = cosine_similarity(paper_embedding, target_paper_embedding)[0]
            if np.any(similarities >= similarity_threshold):
                all_labels.append(target_labels[np.argmax(similarities)])
            else:
                all_labels.append(-1)  # other class: -1
        all_paper_label_dict = dict(zip(all_paper_id_list, all_labels))
        all_label_counts = Counter(all_paper_label_dict.values())
        logger.debug(f"All labels and the number of papers of each label: {all_label_counts}")
        target_label_counts = Counter(target_paper_label_dict.values())
        logger.debug(f"All labels and the number of target papers of each label : {target_label_counts}")
        target_label_list = list(target_label_counts.keys())
        max_k = max(self.config.RETRIEVE.top_k_list)
        logger.info("=== Begin filter related paper ===")
        max_k_paper_id_list = self.filter_related_paper(score_all_dict, top_k=max_k)
        logger.info("=== End filter related paper ===")
        ## calculate recall and precision of first {10, 20, 30, ...} papers
        for k in self.config.RETRIEVE.top_k_list:
            # 前top k 的文章
            top_k = min(k, len(max_k_paper_id_list))
            top_k_paper_id_list = max_k_paper_id_list[:top_k]
            top_k_paper_label_dict = {}
            for paper_id in top_k_paper_id_list:
                top_k_paper_label_dict[paper_id] = all_paper_label_dict[paper_id]
            logger.debug(
                "=== ideal top {}, real top {} paper id list : {}".format(k, top_k, top_k_paper_label_dict)
            )
            logger.debug(
                {
                    paper_id: self.paper_client.get_paper_attribute(paper_id, "title")
                    for paper_id in top_k_paper_label_dict.keys()
                }
            )
            top_k_label_counts = Counter(top_k_paper_label_dict.values())
            logger.debug(f"Retrieved {top_k} papers have K different label: {top_k_label_counts}")
            top_k_label_list = list(top_k_label_counts.keys())
            match_label_list = list(set(target_label_list) & set(top_k_label_list))
            logger.debug(f"match label list : {match_label_list}")
            recall = 0
            precision = 0
            for label in match_label_list:
                recall += target_label_counts[label]
            for label in match_label_list:
                precision += top_k_label_counts[label]
            recall /= len(target_paper_id_list)
            precision /= len(top_k_paper_id_list)
            result[k] = {"recall": recall, "precision": precision}

        ## calculate recall and precision of all retrieved papers
        related_paper_id_list = list(score_all_dict.keys())
        related_paper_label_dict = {}
        for paper_id in related_paper_id_list:
            related_paper_label_dict[paper_id] = all_paper_label_dict[paper_id]
        related_label_counts = Counter(related_paper_label_dict.values())
        logger.debug(f"top K label counts : {related_label_counts}")
        related_label_list = list(related_label_counts.keys())
        match_label_list = list(set(target_label_list) & set(related_label_list))
        recall = 0
        precision = 0
        for label in match_label_list:
            recall += target_label_counts[label]
        for label in match_label_list:
            precision += related_label_counts[label]
        recall /= len(target_paper_id_list)
        precision /= len(related_paper_id_list)

        logger.debug(result)
        return result, len(target_label_counts), recall, precision


class RetrieverFactory(object):
    """RetrieverFactory is a singleton class, which will return cls._instance if it has been 
    created, it saves all Retriever instances.
    Args:
        None
    Returns:
        The singleton instance of the RetrieverFactory
    """
    _instance = None
    _lock = threading.Lock()

    def __new__(cls, *args, **kwargs):
        with cls._lock:
            if cls._instance is None:
                cls._instance = super(RetrieverFactory, cls).__new__(
                    cls, *args, **kwargs
                )
                cls._instance.init_factory()
        return cls._instance

    def init_factory(self):
        self.retriever_classes = {}

    @staticmethod
    def get_retriever_factory():
        """The method can also return the singleton instance of the RetrieverFactory
        Args:
            None
        Returns:
            The singleton instance of the RetrieverFactory
        """
        if RetrieverFactory._instance is None:
            RetrieverFactory._instance = RetrieverFactory()
        return RetrieverFactory._instance

    def register_retriever(self, retriever_name, retriever_class) -> bool:
        """Register a new retriever class (not instance) to the RetrieverFactory
        Args:
            retriever_name: str
            retriever_class: a class object (not instance)
        Returns:
            True if add successfully, False otherwise
        """
        if retriever_name not in self.retriever_classes:
            self.retriever_classes[retriever_name] = retriever_class
            return True
        else:
            return False

    def delete_retriever(self, retriever_name) -> bool:
        if retriever_name in self.retriever_classes:
            self.retriever_classes[retriever_name] = None
            del self.retriever_classes[retriever_name]
            return True
        else:
            return False

    def __getitem__(self, key):
        return self.retriever_classes[key]

    def __len__(self):
        return len(self.retriever_classes)

    def create_retriever(self, retriever_name, *args, **kwargs) -> Retriever:
        """Return a retriever instance
        Args:
            retriever_name: str
        Returns:
            The retriever
        """
        if retriever_name not in self.retriever_classes:
            raise ValueError(f"Unknown retriever type: {retriever_name}. retriever_name should be one of {self.retriever_classes.keys()}")
        else:
            return self.retriever_classes[retriever_name](*args, **kwargs)


class autoregister:
    def __init__(self, retriever_name, *args, **kwds):
        self.retriever_name = retriever_name

    def __call__(self, cls, *args, **kwds):
        if RetrieverFactory.get_retriever_factory().register_retriever(
            self.retriever_name, cls
        ):
            cls.retriever_name = self.retriever_name
            return cls
        else:
            raise KeyError()


@autoregister("SN")
class SNRetriever(Retriever):
    def __init__(self, config):
        super().__init__(config)

    def retrieve_paper(self, bg):
        """Retrieve papers P (a set) according to embeddings' similarity between the input 
        background and the backgrounds from the database. Optionally, you can also retrieve 
        papers co-cited with P.
        Args:
            bg (str): the input background
        Returns:
            result (dict):
                "background_embedding": embedding of the input background,
                "paper" (List of int): all retrieved related_papers' ids,
                "entities" (List): An empty list (TODO: remove),
                "cocite_paper" (List of int): all papers cocited with embedding-retrieved papers
        """
        entities = []
        embedding = self.embedding_model.encode(bg, device=self.device)
        sn_paper_id_list = self.cosine_similarity_search(
            embedding=embedding,
            k=self.config.RETRIEVE.sn_retrieve_paper_num,
            type_name=f"{self.config.RETRIEVE.SN_field_name}_embedding{self.embedding_postfix}"
        )
        related_paper = set()
        related_paper.update(sn_paper_id_list)
        cocite_id_set = set()
        if self.use_cocite:
            for paper_id in related_paper:
                cocite_id_set.update(
                    self.cocite.get_cocite_ids(
                        paper_id, k=self.config.RETRIEVE.cocite_top_k
                    )
                )
            related_paper = related_paper.union(cocite_id_set)
        related_paper = list(related_paper)
        logger.debug(f"paper num before filter: {len(related_paper)}")
        result = {
            f"background_embedding{self.embedding_postfix}": embedding,
            "paper": related_paper,
            "entities": entities,
            "cocite_paper": list(cocite_id_set),
        }
        return result

    def retrieve(self, bg, entities, need_evaluate=True, target_paper_id_list=[]):
        """
        Args:
            bg (str): The user input background
        Return:
            result (dict):
                "recall": recall of paper retrieval, 0 if need_evaluate==False,
                "precision": precision of paper retrieval, 0 if need_evaluate==False,,
                "filtered_recall": recall of paper retrieval after filtering, 0 if need_evaluate==False,,
                "filtered_precision": precision of paper retrieval after filtering, 0 if need_evaluate==False,,
                "related_paper": all retrieved related_papers. !!! [ The most important item ]
                "related_paper_id_list": all retrieved related_papers' ids. !!! [ The most important item ]
                "cocite_paper_id_list": retrieve_result["cocite_paper"],
                "entities": retrieve_result["entities"], always empty
                "top_k_matrix": top_k_matrix, 0 if need_evaluate==False
                "gt_reference_num": len(target_paper_id_list)
                "retrieve_paper_num": len(related_paper_id_list),
                "label_num": TODO,
        """
        if need_evaluate:
            if target_paper_id_list is None or len(target_paper_id_list) == 0:
                logger.error(
                    "If you need evaluate retriever, please input target paper is list..."
                )
            else:
                target_paper_id_list = list(set(target_paper_id_list))
        retrieve_result = self.retrieve_paper(bg)
        related_paper_id_list = retrieve_result["paper"]
        retrieve_paper_num = len(related_paper_id_list)
        # scores between the input background and all retrieved papers
        _, _, score_all_dict = self.cal_related_score(
            retrieve_result[f"background_embedding{self.embedding_postfix}"], related_paper_id_list=related_paper_id_list,
            type_name=f"{self.config.RETRIEVE.SN_field_name}_embedding{self.embedding_postfix}"
        )
        top_k_matrix = {}
        recall = 0
        precision = 0
        filtered_recall = 0
        label_num = 0
        filtered_precision = 0
        if need_evaluate:
            top_k_matrix, label_num, recall, precision = self.eval_related_paper_in_all(
                score_all_dict, target_paper_id_list
            )
            logger.debug("Top K matrix:{}".format(top_k_matrix))
            logger.debug("before filter:")
            logger.debug(f"Recall: {recall:.3f}")
            logger.debug(f"Precision: {precision:.3f}")
        ## For idea generation, only top 10 papers will be used, which has no relations with retriveal evaluation
        related_paper = self.filter_related_paper(score_all_dict, top_k=self.config.RETRIEVE.all_retrieve_paper_num)
        related_paper = self.update_related_paper(related_paper)
        result = {
            "recall": recall,
            "precision": precision,
            "filtered_recall": filtered_recall,
            "filtered_precision": filtered_precision,
            "related_paper": related_paper,
            "related_paper_id_list": related_paper_id_list,
            "cocite_paper_id_list": retrieve_result["cocite_paper"],
            "entities": retrieve_result["entities"],
            "top_k_matrix": top_k_matrix,
            "gt_reference_num": len(target_paper_id_list),
            "retrieve_paper_num": retrieve_paper_num,
            "label_num": label_num,
        }
        return result


@autoregister("KG")
class KGRetriever(Retriever):
    def __init__(self, config):
        super().__init__(config)

    def retrieve_paper(self, entities):
        """Retrieve according to entities
        """
        new_entities = self.retrieve_entities_by_enties(entities)
        logger.debug("KG entities for retriever: {}".format(new_entities))
        related_paper = set()
        for entity in new_entities:
            paper_id_set = set(self.paper_client.find_paper_by_entity(entity))
            related_paper = related_paper.union(paper_id_set)
        cocite_id_set = set()
        if self.use_cocite:
            for paper_id in related_paper:
                cocite_id_set.update(self.cocite.get_cocite_ids(paper_id))
            related_paper = related_paper.union(cocite_id_set)
        related_paper = list(related_paper)
        logger.debug(f"paper num before filter: {len(related_paper)}")
        result = {
            "paper": related_paper,
            "entities": entities,
            "cocite_paper": list(cocite_id_set),
        }
        return result

    def retrieve(self, bg, entities, need_evaluate=False, target_paper_id_list=[]):
        """
        Args:
            context: string
        Return:
            list(dict)
        """
        if need_evaluate:
            if target_paper_id_list is None or len(target_paper_id_list) == 0:
                logger.error(
                    "If you need evaluate retriever, please input target paper is list..."
                )
            else:
                target_paper_id_list = list(set(target_paper_id_list))
                logger.debug(f"target paper id list: {target_paper_id_list}")
        retrieve_result = self.retrieve_paper(entities)
        related_paper_id_list = retrieve_result["paper"]
        retrieve_paper_num = len(related_paper_id_list)
        embedding = self.embedding_model.encode(bg, device=self.device)
        _, _, score_all_dict = self.cal_related_score(
            embedding, related_paper_id_list=related_paper_id_list,
            type_name=f"background_embedding{self.embedding_postfix}"
        )
        top_k_matrix = {}
        recall = 0
        precision = 0
        filtered_recall = 0
        label_num = 0
        filtered_precision = 0
        if need_evaluate:
            top_k_matrix, label_num, recall, precision = self.eval_related_paper_in_all(
                score_all_dict, target_paper_id_list
            )
            logger.debug("Top P ACC:{}".format(top_k_matrix))
            logger.debug("before filter:")
            logger.debug(f"Recall: {recall:.3f}")
            logger.debug(f"Precision: {precision:.3f}")
        related_paper = self.filter_related_paper(score_all_dict, top_k=self.config.RETRIEVE.all_retrieve_paper_num)
        related_paper = self.update_related_paper(related_paper)
        result = {
            "recall": recall,
            "precision": precision,
            "filtered_recall": filtered_recall,
            "filtered_precision": filtered_precision,
            "related_paper": related_paper,
            "related_paper_id_list": related_paper_id_list,
            "cocite_paper_id_list": retrieve_result["cocite_paper"],
            "entities": retrieve_result["entities"],
            "top_k_matrix": top_k_matrix,
            "gt_reference_num": len(target_paper_id_list),
            "retrieve_paper_num": retrieve_paper_num,
            "label_num": label_num,
        }
        return result


@autoregister("SNKG")
class SNKGRetriever(Retriever):
    def __init__(self, config):
        super().__init__(config)

    def retrieve_paper(self, bg, entities):
        sn_entities = []
        ## 1. Retrieve papers according to the embeddings of input background
        embedding = self.embedding_model.encode(bg, device=self.device)
        sn_paper_id_list = self.cosine_similarity_search(
            embedding, k=self.config.RETRIEVE.sn_num_for_entity,
            type_name=f"{self.config.RETRIEVE.SN_field_name}_embedding{self.embedding_postfix}"
        )
        related_paper = set()
        related_paper.update(sn_paper_id_list)
        logger.debug(f"SN retrieve {len(related_paper)} papers")

        ## 2. Retrieve papers according to entites
        # Fetch all entities from embedding-retrieved papers
        sn_entities += self.paper_client.find_entities_by_paper_list(sn_paper_id_list)
        logger.debug("SN entities for retriever: {}".format(sn_entities))
        entities = list(set(entities + sn_entities))
        # Expand entity list through synonyms
        new_entities = self.retrieve_entities_by_enties(entities)
        logger.debug("SNKG entities for retriever: {}".format(new_entities))
        paper_id_set = set()
        for entity in new_entities:
            paper_id_set.update(self.paper_client.find_paper_by_entity(entity))
        related_paper = related_paper.union(paper_id_set)
        logger.debug(f"Entity retrieve {len(paper_id_set)} papers")
        logger.debug(f"SN+entity retrieve {len(related_paper)} papers")

        ## 3. Retrieve papers according to citation co-occurrence
        cocite_id_set = set()
        if self.use_cocite:
            for paper_id in related_paper:
                cocite_id_set.update(self.cocite.get_cocite_ids(paper_id))
            related_paper = related_paper.union(cocite_id_set)
        logger.debug(f"Cocite retrieve {len(cocite_id_set)} papers")
        logger.debug(f"SN+entity+cocite retrieve {len(related_paper)} papers")

        ## 4. Return retrieval results
        related_paper = list(related_paper)
        result = {
            f"background_embedding{self.embedding_postfix}": embedding,
            "paper": related_paper,
            "entities": entities,
            "cocite_paper": list(cocite_id_set),
        }
        return result

    def retrieve(
        self, bg, entities, need_evaluate=True, target_paper_id_list=[]
    ):
        """
        Args:
            context: string
        Return:
            list(dict)
        """
        if need_evaluate:
            if target_paper_id_list is None or len(target_paper_id_list) == 0:
                logger.error(
                    "If you need evaluate retriever, please input target paper is list..."
                )
            else:
                target_paper_id_list = list(set(target_paper_id_list))
                logger.debug(f"target paper id list: {target_paper_id_list}")
        retrieve_result = self.retrieve_paper(bg, entities)
        related_paper_id_list = retrieve_result["paper"]
        retrieve_paper_num = len(related_paper_id_list)
        logger.info("=== Begin cal related paper score ===")
        _, _, score_all_dict = self.cal_related_score(
            retrieve_result[f"background_embedding{self.embedding_postfix}"], related_paper_id_list=related_paper_id_list,
            type_name=f"background_embedding{self.embedding_postfix}"
        )
        logger.info("=== End cal related paper score ===")
        top_k_matrix = {}
        recall = 0
        precision = 0
        filtered_recall = 0
        filtered_precision = 0
        label_num = 0
        if need_evaluate:
            top_k_matrix, label_num, recall, precision = self.eval_related_paper_in_all(
                score_all_dict, target_paper_id_list
            )
            logger.debug("Top K matrix:{}".format(top_k_matrix))
            logger.debug("before filter:")
            logger.debug(f"Recall: {recall:.3f}")
            logger.debug(f"Precision: {precision:.3f}")
        logger.info("=== Begin filter related paper score ===")
        related_paper = self.filter_related_paper(score_all_dict, self.config.RETRIEVE.all_retrieve_paper_num)
        logger.info("=== End filter related paper score ===")
        related_paper = self.update_related_paper(related_paper)
        result = {
            "recall": recall,
            "precision": precision,
            "filtered_recall": filtered_recall,
            "filtered_precision": filtered_precision,
            "related_paper": related_paper,
            "cocite_paper_id_list": retrieve_result["cocite_paper"],
            "related_paper_id_list": related_paper_id_list,
            "entities": retrieve_result["entities"],
            "top_k_matrix": top_k_matrix,
            "gt_reference_num": (
                len(target_paper_id_list) if target_paper_id_list is not None else 0
            ),
            "retrieve_paper_num": retrieve_paper_num,
            "label_num": label_num,
        }
        return result