File size: 40,733 Bytes
e17c9f2 a6a5155 e17c9f2 c8709b2 e17c9f2 a6a5155 02069d7 a6a5155 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 de0c71d e17c9f2 de0c71d a6a5155 e17c9f2 a6a5155 e17c9f2 c8709b2 c9fbbef c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 02069d7 e17c9f2 02069d7 e17c9f2 69e60be e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 02069d7 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 8a27036 b926e53 8a27036 69e60be e17c9f2 8a27036 e17c9f2 8a27036 e17c9f2 c8709b2 e17c9f2 a6a5155 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 a6a5155 e17c9f2 c8709b2 e17c9f2 a6a5155 c8709b2 a6a5155 e17c9f2 c8709b2 e17c9f2 c8709b2 a6a5155 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 a6a5155 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 de0c71d e17c9f2 de0c71d c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 de0c71d e17c9f2 c8709b2 e17c9f2 b926e53 e17c9f2 b926e53 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 de0c71d e17c9f2 c8709b2 e17c9f2 88253fe e17c9f2 b926e53 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 de0c71d e17c9f2 c8709b2 b926e53 e17c9f2 c8709b2 e17c9f2 c8709b2 02069d7 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 c8709b2 e17c9f2 de0c71d e17c9f2 c8709b2 e17c9f2 de0c71d e17c9f2 de0c71d c8709b2 de0c71d e17c9f2 a6a5155 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 |
import torch
import itertools
import threading
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from collections import Counter, defaultdict
from loguru import logger
from abc import ABCMeta, abstractmethod
from .paper_client import PaperClient
from .paper_crawling import PaperCrawling
from .llms_api import APIHelper
from .hash import get_embedding_model
class UnionFind:
def __init__(self, n):
self.parent = list(range(n))
self.rank = [1] * n
def find(self, x):
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x])
return self.parent[x]
def union(self, x, y):
rootX = self.find(x)
rootY = self.find(y)
if rootX != rootY:
if self.rank[rootX] > self.rank[rootY]:
self.parent[rootY] = rootX
elif self.rank[rootX] < self.rank[rootY]:
self.parent[rootX] = rootY
else:
self.parent[rootY] = rootX
self.rank[rootX] += 1
def can_merge(uf, similarity_matrix, i, j, threshold):
"""Condition of i and j can be merged: After merging, the similarity of any two nodes
from root_i and root_j are larger than threshold
"""
root_i = uf.find(i)
root_j = uf.find(j)
for k in range(len(similarity_matrix)):
if uf.find(k) == root_i or uf.find(k) == root_j:
if (
similarity_matrix[i][k] < threshold
or similarity_matrix[j][k] < threshold
):
return False
return True
class CoCite:
_instance = None
_initialized = False
def __new__(cls, *args, **kwargs):
if cls._instance is None:
cls._instance = super(CoCite, cls).__new__(cls)
return cls._instance
def __init__(self) -> None:
if not self._initialized:
logger.debug("init co-cite map begin...")
self.paper_client = PaperClient()
citemap = self.paper_client.build_citemap()
self.comap = defaultdict(lambda: defaultdict(int))
for paper_id, cited_id in citemap.items():
for id0, id1 in itertools.combinations(cited_id, 2):
# ensure comap[id0][id1] == comap[id1][id0]
self.comap[id0][id1] += 1
self.comap[id1][id0] += 1
logger.debug("init co-cite map success")
CoCite._initialized = True
def get_cocite_ids(self, id_, k=1):
"""
"""
sorted_items = sorted(self.comap[id_].items(), key=lambda x: x[1], reverse=True)
top_k = sorted_items[:k]
paper_ids = []
for item in top_k:
paper_ids.append(item[0])
paper_ids = self.paper_client.filter_paper_id_list(paper_ids)
return paper_ids
class Retriever(object):
"""The superclass of all retrievers
Args:
config:
Returns:
A Retriever instance
"""
__metaclass__ = ABCMeta
retriever_name = "BASE"
def __init__(self, config):
self.config = config
self.use_cocite = config.RETRIEVE.use_cocite
self.use_cluster_to_filter = config.RETRIEVE.use_cluster_to_filter
self.paper_client = PaperClient()
self.cocite = CoCite()
self.api_helper = APIHelper(config=config)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.embedding_model = get_embedding_model(config)
self.paper_crawling = PaperCrawling(config=config)
if self.config.DEFAULT.embedding == "sentence-transformers/all-MiniLM-L6-v2":
self.embedding_postfix = ""
elif self.config.DEFAULT.embedding == "BAAI/llm-embedder":
self.embedding_postfix = "_llm_embedder"
elif self.config.DEFAULT.embedding == "jinaai/jina-embeddings-v3":
self.embedding_postfix = "_jina_v3"
if self.config.DEFAULT.embedding_database == "text-matching":
self.embedding_postfix += "_text_matching"
elif self.config.DEFAULT.embedding_database == "retrieval.query":
self.embedding_postfix += "_query"
elif self.config.DEFAULT.embedding_database == "retrieval.passage":
self.embedding_postfix += "_passage"
@abstractmethod
def retrieve(self, bg, entities, use_evaluate):
"""Retrieve papers, should be implemented by the sub-class
Args:
None
Returns:
None
"""
pass
def retrieve_entities_by_enties(self, entities):
"""The method do three things:
1. Expand entities according to entities co-occurence
2. Count the number of papers related to each expanded entity. Sort entities in terms of their occurence times in ascending order
3. Initial new entities. Retrieve entities one by one until the number of related papers reach a threshold
Args:
entities: A List of entities, e.g., [str, str, ...]
Returns:
new_entities: A List of entities after expansion, e.g., [str, str, ...]
"""
# TODO: KG
expand_entities = self.paper_client.find_related_entities_by_entity_list(
entities,
n=self.config.RETRIEVE.kg_jump_num,
k=self.config.RETRIEVE.kg_cover_num,
relation_name=self.config.RETRIEVE.relation_name,
)
expand_entities = list(set(entities + expand_entities))
entity_paper_num_dict = self.paper_client.get_entities_related_paper_num(
expand_entities
)
new_entities = []
entity_paper_num_dict = {
k: v for k, v in entity_paper_num_dict.items() if v != 0
}
entity_paper_num_dict = dict(
sorted(entity_paper_num_dict.items(), key=lambda item: item[1])
)
sum_paper_num = 0
for key, value in entity_paper_num_dict.items():
if sum_paper_num <= self.config.RETRIEVE.sum_paper_num:
sum_paper_num += value
new_entities.append(key)
elif (
value < self.config.RETRIEVE.limit_num
and sum_paper_num < self.config.RETRIEVE.sum_paper_num
):
sum_paper_num += value
new_entities.append(key)
return new_entities
def update_related_paper(self, paper_id_list):
"""
Args:
paper_id_list (List of hash_id): e.g., [1231214, 46345]
Return:
related_paper (List of dict):
"""
related_paper = self.paper_client.update_papers_from_client(paper_id_list)
return related_paper
def calculate_similarity(self, entities, related_entities_list, use_weight=False):
"""[Deprecated] Calculate the similarities between two lists of entities
"""
if use_weight:
vec1 = self.vectorizer.transform([" ".join(entities)]).toarray()[0]
weighted_vec1 = np.array(
[
vec1[i] * self.log_inverse_freq.get(word, 1)
for i, word in enumerate(self.vectorizer.get_feature_names_out())
]
)
vecs2 = self.vectorizer.transform(
[
" ".join(related_entities)
for related_entities in related_entities_list
]
).toarray()
weighted_vecs2 = np.array(
[
[
vec2[i] * self.log_inverse_freq.get(word, 1)
for i, word in enumerate(
self.vectorizer.get_feature_names_out()
)
]
for vec2 in vecs2
]
)
similarity = cosine_similarity([weighted_vec1], weighted_vecs2)[0]
else:
vec1 = self.vectorizer.transform([" ".join(entities)])
vecs2 = self.vectorizer.transform(
[
" ".join(related_entities)
for related_entities in related_entities_list
]
)
similarity = cosine_similarity(vec1, vecs2)[0]
return similarity
def cal_related_score(
self, embedding, related_paper_id_list, type_name="background_embedding"
):
"""Calculate the cosine similarity between the input background's embedding and
given list of papers
Args:
embedding: the embedding of the input background
related_paper_id_list (List of int): the paper ids in the database
Returns:
Empty dict: {}
Empty dict: {}
score_all_dict:
paper_id1: score1,
paper_id2: score2,
...
"""
score_1 = np.zeros((len(related_paper_id_list)))
# score_2 = np.zeros((len(related_paper_id_list)))
origin_vector = torch.tensor(embedding).to(self.device).unsqueeze(0)
context_embeddings = self.paper_client.get_papers_attribute(
related_paper_id_list, type_name
)
if len(context_embeddings) > 0:
context_embeddings = torch.tensor(context_embeddings).to(self.device)
score_1 = torch.nn.functional.cosine_similarity(
origin_vector, context_embeddings
)
score_1 = score_1.cpu().numpy()
if self.config.RETRIEVE.need_normalize:
score_1 = score_1 / np.max(score_1)
score_all_dict = dict(zip(related_paper_id_list, score_1))
# score_en_dict = dict(zip(related_paper_id_list, score_2))
"""
score_all_dict = dict(
zip(
related_paper_id_list,
score_1 * self.config.RETRIEVE.alpha
+ score_2 * self.config.RETRIEVE.beta,
)
)
"""
return {}, {}, score_all_dict
def filter_related_paper(self, score_dict, top_k):
"""Pick top_k papers from all retrieved papers in terms of score_dict. If clustering
is not used, top_k papers with highest scores will be picked. If clustering is used,
we will pick papers from each cluster in turn util top_k papers are chosen.
Args:
score_dict (dict): dict of (paper_id, similarity with user input background)
top_k (int): pick top_k papers
Returns:
"""
if len(score_dict) <= top_k:
return list(score_dict.keys())
if not self.use_cluster_to_filter:
paper_id_list = (
list(score_dict.keys())[:top_k]
if len(score_dict) >= top_k
else list(score_dict.keys())
)
return paper_id_list
else:
## Calculate the final embedding for each paper, which is the weighted average
## background_embedding (embedding), contribution_embedding, and summary_embedding.
# clustering filter, ensure that each category the highest score save first
# background embedding
paper_id_list = list(score_dict.keys())
paper_embedding_list = [
self.paper_client.get_paper_attribute(paper_id, f"background_embedding{self.embedding_postfix}")
for paper_id in paper_id_list
]
paper_embedding = np.array(paper_embedding_list)
# contribution embedding
paper_embedding_list = [
self.paper_client.get_paper_attribute(
paper_id, f"contribution_embedding{self.embedding_postfix}"
)
for paper_id in paper_id_list
]
paper_contribution_embedding = np.array(paper_embedding_list)
# summary embedding
paper_embedding_list = [
self.paper_client.get_paper_attribute(paper_id, f"summary_embedding{self.embedding_postfix}")
for paper_id in paper_id_list
]
paper_summary_embedding = np.array(paper_embedding_list)
# abstract embedding
paper_embedding_list = [
self.paper_client.get_paper_attribute(paper_id, f"abstract_embedding{self.embedding_postfix}")
for paper_id in paper_id_list
]
paper_abstract_embedding = np.array(paper_embedding_list)
weight_background = self.config.RETRIEVE.s_bg
weight_contribution = self.config.RETRIEVE.s_contribution
weight_summary = self.config.RETRIEVE.s_summary
weight_abstract = self.config.RETRIEVE.s_abstract
paper_embedding = (
weight_background * paper_embedding
+ weight_contribution * paper_contribution_embedding
+ weight_summary * paper_summary_embedding
+ weight_abstract * paper_abstract_embedding
)
## similarity_matrix of all retrieved papers
similarity_matrix = np.dot(paper_embedding, paper_embedding.T)
related_labels = self.cluster_algorithm(paper_id_list, similarity_matrix)
related_paper_label_dict = dict(zip(paper_id_list, related_labels))
label_group = {}
for paper_id, label in related_paper_label_dict.items():
if label not in label_group:
label_group[label] = []
label_group[label].append(paper_id)
paper_id_list = []
# randomly pick a paper from each cluster in turn until top_k papers are chosen
while len(paper_id_list) < top_k:
for label, papers in label_group.items():
if papers:
paper_id_list.append(papers.pop(0))
if len(paper_id_list) >= top_k:
break
return paper_id_list
def cosine_similarity_search(self, embedding, k=1, type_name="background_embedding"):
"""Retrieve papers through embedding
Args:
embedding: the input embedding
Returns:
result (List of Papers): return related papers with the least embedding distance
"""
result = self.paper_client.cosine_similarity_search(
embedding, k, type_name=type_name
)
# backtrack: first is itself
result = result[1:]
return result
def cluster_algorithm(self, paper_id_list, similarity_matrix):
"""
"""
threshold = self.config.RETRIEVE.similarity_threshold
uf = UnionFind(len(paper_id_list))
# merge
for i in range(len(similarity_matrix)):
for j in range(i + 1, len(similarity_matrix)):
if similarity_matrix[i][j] >= threshold:
if can_merge(uf, similarity_matrix, i, j, threshold):
uf.union(i, j)
cluster_labels = [uf.find(i) for i in range(len(similarity_matrix))]
return cluster_labels
def eval_related_paper_in_all(self, score_all_dict, target_paper_id_list):
score_all_dict = dict(
sorted(score_all_dict.items(), key=lambda item: item[1], reverse=True)
)
result = {}
related_paper_id_list = list(score_all_dict.keys())
if len(related_paper_id_list) == 0:
for k in self.config.RETRIEVE.top_k_list:
result[k] = {"recall": 0, "precision": 0}
return result, 0, 0, 0
## merge retrieved papers and target papers and clustering
## clustering according to the combination of background, contribution, and summary_embedding
all_paper_id_set = set(related_paper_id_list)
all_paper_id_set.update(target_paper_id_list)
all_paper_id_list = list(all_paper_id_set)
# get all target papers' background_embedding
paper_embedding_list = [
self.paper_client.get_paper_attribute(paper_id, f"background_embedding{self.embedding_postfix}")
for paper_id in target_paper_id_list
]
paper_embedding = np.array(paper_embedding_list)
# get all target papers' contribution_embedding
paper_embedding_list = [
self.paper_client.get_paper_attribute(paper_id, f"contribution_embedding{self.embedding_postfix}")
for paper_id in target_paper_id_list
]
paper_contribution_embedding = np.array(paper_embedding_list)
# get all target papers' summary_embedding
paper_embedding_list = [
self.paper_client.get_paper_attribute(paper_id, f"summary_embedding{self.embedding_postfix}")
for paper_id in target_paper_id_list
]
# abstract embedding
paper_embedding_list = [
self.paper_client.get_paper_attribute(paper_id, f"abstract_embedding{self.embedding_postfix}")
for paper_id in target_paper_id_list
]
paper_abstract_embedding = np.array(paper_embedding_list)
paper_summary_embedding = np.array(paper_embedding_list)
weight_background = self.config.RETRIEVE.s_bg
weight_contribution = self.config.RETRIEVE.s_contribution
weight_summary = self.config.RETRIEVE.s_summary
weight_abstract = self.config.RETRIEVE.s_abstract
# 2D matrix of size [# of target papers, embedding dimension]
target_paper_embedding = (
weight_background * paper_embedding
+ weight_contribution * paper_contribution_embedding
+ weight_summary * paper_summary_embedding
+ weight_abstract * paper_abstract_embedding
)
similarity_threshold = self.config.RETRIEVE.similarity_threshold
similarity_matrix = np.dot(target_paper_embedding, target_paper_embedding.T)
# return each target_paper's cluster label
target_labels = self.cluster_algorithm(target_paper_id_list, similarity_matrix)
target_paper_label_dict = dict(zip(target_paper_id_list, target_labels))
logger.debug("Target paper cluster result: {}".format(target_paper_label_dict))
logger.debug(
{
paper_id: self.paper_client.get_paper_attribute(paper_id, "title")
for paper_id in target_paper_label_dict.keys()
}
)
## calculate the similarity between each two papers
all_labels = []
for paper_id in all_paper_id_list:
# for each paper, get its background_embedding
paper_bg_embedding = [
self.paper_client.get_paper_attribute(paper_id, f"background_embedding{self.embedding_postfix}")
]
paper_bg_embedding = np.array(paper_bg_embedding)
# for each paper, get its contribution_embedding
paper_contribution_embedding = [
self.paper_client.get_paper_attribute(
paper_id, f"contribution_embedding{self.embedding_postfix}"
)
]
paper_contribution_embedding = np.array(paper_contribution_embedding)
# for each paper, get its summary_embedding
paper_summary_embedding = [
self.paper_client.get_paper_attribute(paper_id, f"summary_embedding{self.embedding_postfix}")
]
paper_summary_embedding = np.array(paper_summary_embedding)
# for each paper, get its abstract_embedding
paper_abstract_embedding = [
self.paper_client.get_paper_attribute(paper_id, f"abstract_embedding{self.embedding_postfix}")
]
paper_abstract_embedding = np.array(paper_abstract_embedding)
paper_embedding = (
weight_background * paper_bg_embedding
+ weight_contribution * paper_contribution_embedding
+ weight_summary * paper_summary_embedding
+ weight_abstract * paper_abstract_embedding
)
# vector of size embedding dimension
similarities = cosine_similarity(paper_embedding, target_paper_embedding)[0]
if np.any(similarities >= similarity_threshold):
all_labels.append(target_labels[np.argmax(similarities)])
else:
all_labels.append(-1) # other class: -1
all_paper_label_dict = dict(zip(all_paper_id_list, all_labels))
all_label_counts = Counter(all_paper_label_dict.values())
logger.debug(f"All labels and the number of papers of each label: {all_label_counts}")
target_label_counts = Counter(target_paper_label_dict.values())
logger.debug(f"All labels and the number of target papers of each label : {target_label_counts}")
target_label_list = list(target_label_counts.keys())
max_k = max(self.config.RETRIEVE.top_k_list)
logger.info("=== Begin filter related paper ===")
max_k_paper_id_list = self.filter_related_paper(score_all_dict, top_k=max_k)
logger.info("=== End filter related paper ===")
## calculate recall and precision of first {10, 20, 30, ...} papers
for k in self.config.RETRIEVE.top_k_list:
# 前top k 的文章
top_k = min(k, len(max_k_paper_id_list))
top_k_paper_id_list = max_k_paper_id_list[:top_k]
top_k_paper_label_dict = {}
for paper_id in top_k_paper_id_list:
top_k_paper_label_dict[paper_id] = all_paper_label_dict[paper_id]
logger.debug(
"=== ideal top {}, real top {} paper id list : {}".format(k, top_k, top_k_paper_label_dict)
)
logger.debug(
{
paper_id: self.paper_client.get_paper_attribute(paper_id, "title")
for paper_id in top_k_paper_label_dict.keys()
}
)
top_k_label_counts = Counter(top_k_paper_label_dict.values())
logger.debug(f"Retrieved {top_k} papers have K different label: {top_k_label_counts}")
top_k_label_list = list(top_k_label_counts.keys())
match_label_list = list(set(target_label_list) & set(top_k_label_list))
logger.debug(f"match label list : {match_label_list}")
recall = 0
precision = 0
for label in match_label_list:
recall += target_label_counts[label]
for label in match_label_list:
precision += top_k_label_counts[label]
recall /= len(target_paper_id_list)
precision /= len(top_k_paper_id_list)
result[k] = {"recall": recall, "precision": precision}
## calculate recall and precision of all retrieved papers
related_paper_id_list = list(score_all_dict.keys())
related_paper_label_dict = {}
for paper_id in related_paper_id_list:
related_paper_label_dict[paper_id] = all_paper_label_dict[paper_id]
related_label_counts = Counter(related_paper_label_dict.values())
logger.debug(f"top K label counts : {related_label_counts}")
related_label_list = list(related_label_counts.keys())
match_label_list = list(set(target_label_list) & set(related_label_list))
recall = 0
precision = 0
for label in match_label_list:
recall += target_label_counts[label]
for label in match_label_list:
precision += related_label_counts[label]
recall /= len(target_paper_id_list)
precision /= len(related_paper_id_list)
logger.debug(result)
return result, len(target_label_counts), recall, precision
class RetrieverFactory(object):
"""RetrieverFactory is a singleton class, which will return cls._instance if it has been
created, it saves all Retriever instances.
Args:
None
Returns:
The singleton instance of the RetrieverFactory
"""
_instance = None
_lock = threading.Lock()
def __new__(cls, *args, **kwargs):
with cls._lock:
if cls._instance is None:
cls._instance = super(RetrieverFactory, cls).__new__(
cls, *args, **kwargs
)
cls._instance.init_factory()
return cls._instance
def init_factory(self):
self.retriever_classes = {}
@staticmethod
def get_retriever_factory():
"""The method can also return the singleton instance of the RetrieverFactory
Args:
None
Returns:
The singleton instance of the RetrieverFactory
"""
if RetrieverFactory._instance is None:
RetrieverFactory._instance = RetrieverFactory()
return RetrieverFactory._instance
def register_retriever(self, retriever_name, retriever_class) -> bool:
"""Register a new retriever class (not instance) to the RetrieverFactory
Args:
retriever_name: str
retriever_class: a class object (not instance)
Returns:
True if add successfully, False otherwise
"""
if retriever_name not in self.retriever_classes:
self.retriever_classes[retriever_name] = retriever_class
return True
else:
return False
def delete_retriever(self, retriever_name) -> bool:
if retriever_name in self.retriever_classes:
self.retriever_classes[retriever_name] = None
del self.retriever_classes[retriever_name]
return True
else:
return False
def __getitem__(self, key):
return self.retriever_classes[key]
def __len__(self):
return len(self.retriever_classes)
def create_retriever(self, retriever_name, *args, **kwargs) -> Retriever:
"""Return a retriever instance
Args:
retriever_name: str
Returns:
The retriever
"""
if retriever_name not in self.retriever_classes:
raise ValueError(f"Unknown retriever type: {retriever_name}. retriever_name should be one of {self.retriever_classes.keys()}")
else:
return self.retriever_classes[retriever_name](*args, **kwargs)
class autoregister:
def __init__(self, retriever_name, *args, **kwds):
self.retriever_name = retriever_name
def __call__(self, cls, *args, **kwds):
if RetrieverFactory.get_retriever_factory().register_retriever(
self.retriever_name, cls
):
cls.retriever_name = self.retriever_name
return cls
else:
raise KeyError()
@autoregister("SN")
class SNRetriever(Retriever):
def __init__(self, config):
super().__init__(config)
def retrieve_paper(self, bg):
"""Retrieve papers P (a set) according to embeddings' similarity between the input
background and the backgrounds from the database. Optionally, you can also retrieve
papers co-cited with P.
Args:
bg (str): the input background
Returns:
result (dict):
"background_embedding": embedding of the input background,
"paper" (List of int): all retrieved related_papers' ids,
"entities" (List): An empty list (TODO: remove),
"cocite_paper" (List of int): all papers cocited with embedding-retrieved papers
"""
entities = []
embedding = self.embedding_model.encode(bg, device=self.device)
sn_paper_id_list = self.cosine_similarity_search(
embedding=embedding,
k=self.config.RETRIEVE.sn_retrieve_paper_num,
type_name=f"{self.config.RETRIEVE.SN_field_name}_embedding{self.embedding_postfix}"
)
related_paper = set()
related_paper.update(sn_paper_id_list)
cocite_id_set = set()
if self.use_cocite:
for paper_id in related_paper:
cocite_id_set.update(
self.cocite.get_cocite_ids(
paper_id, k=self.config.RETRIEVE.cocite_top_k
)
)
related_paper = related_paper.union(cocite_id_set)
related_paper = list(related_paper)
logger.debug(f"paper num before filter: {len(related_paper)}")
result = {
f"background_embedding{self.embedding_postfix}": embedding,
"paper": related_paper,
"entities": entities,
"cocite_paper": list(cocite_id_set),
}
return result
def retrieve(self, bg, entities, need_evaluate=True, target_paper_id_list=[]):
"""
Args:
bg (str): The user input background
Return:
result (dict):
"recall": recall of paper retrieval, 0 if need_evaluate==False,
"precision": precision of paper retrieval, 0 if need_evaluate==False,,
"filtered_recall": recall of paper retrieval after filtering, 0 if need_evaluate==False,,
"filtered_precision": precision of paper retrieval after filtering, 0 if need_evaluate==False,,
"related_paper": all retrieved related_papers. !!! [ The most important item ]
"related_paper_id_list": all retrieved related_papers' ids. !!! [ The most important item ]
"cocite_paper_id_list": retrieve_result["cocite_paper"],
"entities": retrieve_result["entities"], always empty
"top_k_matrix": top_k_matrix, 0 if need_evaluate==False
"gt_reference_num": len(target_paper_id_list)
"retrieve_paper_num": len(related_paper_id_list),
"label_num": TODO,
"""
if need_evaluate:
if target_paper_id_list is None or len(target_paper_id_list) == 0:
logger.error(
"If you need evaluate retriever, please input target paper is list..."
)
else:
target_paper_id_list = list(set(target_paper_id_list))
retrieve_result = self.retrieve_paper(bg)
related_paper_id_list = retrieve_result["paper"]
retrieve_paper_num = len(related_paper_id_list)
# scores between the input background and all retrieved papers
_, _, score_all_dict = self.cal_related_score(
retrieve_result[f"background_embedding{self.embedding_postfix}"], related_paper_id_list=related_paper_id_list,
type_name=f"{self.config.RETRIEVE.SN_field_name}_embedding{self.embedding_postfix}"
)
top_k_matrix = {}
recall = 0
precision = 0
filtered_recall = 0
label_num = 0
filtered_precision = 0
if need_evaluate:
top_k_matrix, label_num, recall, precision = self.eval_related_paper_in_all(
score_all_dict, target_paper_id_list
)
logger.debug("Top K matrix:{}".format(top_k_matrix))
logger.debug("before filter:")
logger.debug(f"Recall: {recall:.3f}")
logger.debug(f"Precision: {precision:.3f}")
## For idea generation, only top 10 papers will be used, which has no relations with retriveal evaluation
related_paper = self.filter_related_paper(score_all_dict, top_k=self.config.RETRIEVE.all_retrieve_paper_num)
related_paper = self.update_related_paper(related_paper)
result = {
"recall": recall,
"precision": precision,
"filtered_recall": filtered_recall,
"filtered_precision": filtered_precision,
"related_paper": related_paper,
"related_paper_id_list": related_paper_id_list,
"cocite_paper_id_list": retrieve_result["cocite_paper"],
"entities": retrieve_result["entities"],
"top_k_matrix": top_k_matrix,
"gt_reference_num": len(target_paper_id_list),
"retrieve_paper_num": retrieve_paper_num,
"label_num": label_num,
}
return result
@autoregister("KG")
class KGRetriever(Retriever):
def __init__(self, config):
super().__init__(config)
def retrieve_paper(self, entities):
"""Retrieve according to entities
"""
new_entities = self.retrieve_entities_by_enties(entities)
logger.debug("KG entities for retriever: {}".format(new_entities))
related_paper = set()
for entity in new_entities:
paper_id_set = set(self.paper_client.find_paper_by_entity(entity))
related_paper = related_paper.union(paper_id_set)
cocite_id_set = set()
if self.use_cocite:
for paper_id in related_paper:
cocite_id_set.update(self.cocite.get_cocite_ids(paper_id))
related_paper = related_paper.union(cocite_id_set)
related_paper = list(related_paper)
logger.debug(f"paper num before filter: {len(related_paper)}")
result = {
"paper": related_paper,
"entities": entities,
"cocite_paper": list(cocite_id_set),
}
return result
def retrieve(self, bg, entities, need_evaluate=False, target_paper_id_list=[]):
"""
Args:
context: string
Return:
list(dict)
"""
if need_evaluate:
if target_paper_id_list is None or len(target_paper_id_list) == 0:
logger.error(
"If you need evaluate retriever, please input target paper is list..."
)
else:
target_paper_id_list = list(set(target_paper_id_list))
logger.debug(f"target paper id list: {target_paper_id_list}")
retrieve_result = self.retrieve_paper(entities)
related_paper_id_list = retrieve_result["paper"]
retrieve_paper_num = len(related_paper_id_list)
embedding = self.embedding_model.encode(bg, device=self.device)
_, _, score_all_dict = self.cal_related_score(
embedding, related_paper_id_list=related_paper_id_list,
type_name=f"background_embedding{self.embedding_postfix}"
)
top_k_matrix = {}
recall = 0
precision = 0
filtered_recall = 0
label_num = 0
filtered_precision = 0
if need_evaluate:
top_k_matrix, label_num, recall, precision = self.eval_related_paper_in_all(
score_all_dict, target_paper_id_list
)
logger.debug("Top P ACC:{}".format(top_k_matrix))
logger.debug("before filter:")
logger.debug(f"Recall: {recall:.3f}")
logger.debug(f"Precision: {precision:.3f}")
related_paper = self.filter_related_paper(score_all_dict, top_k=self.config.RETRIEVE.all_retrieve_paper_num)
related_paper = self.update_related_paper(related_paper)
result = {
"recall": recall,
"precision": precision,
"filtered_recall": filtered_recall,
"filtered_precision": filtered_precision,
"related_paper": related_paper,
"related_paper_id_list": related_paper_id_list,
"cocite_paper_id_list": retrieve_result["cocite_paper"],
"entities": retrieve_result["entities"],
"top_k_matrix": top_k_matrix,
"gt_reference_num": len(target_paper_id_list),
"retrieve_paper_num": retrieve_paper_num,
"label_num": label_num,
}
return result
@autoregister("SNKG")
class SNKGRetriever(Retriever):
def __init__(self, config):
super().__init__(config)
def retrieve_paper(self, bg, entities):
sn_entities = []
## 1. Retrieve papers according to the embeddings of input background
embedding = self.embedding_model.encode(bg, device=self.device)
sn_paper_id_list = self.cosine_similarity_search(
embedding, k=self.config.RETRIEVE.sn_num_for_entity,
type_name=f"{self.config.RETRIEVE.SN_field_name}_embedding{self.embedding_postfix}"
)
related_paper = set()
related_paper.update(sn_paper_id_list)
logger.debug(f"SN retrieve {len(related_paper)} papers")
## 2. Retrieve papers according to entites
# Fetch all entities from embedding-retrieved papers
sn_entities += self.paper_client.find_entities_by_paper_list(sn_paper_id_list)
logger.debug("SN entities for retriever: {}".format(sn_entities))
entities = list(set(entities + sn_entities))
# Expand entity list through synonyms
new_entities = self.retrieve_entities_by_enties(entities)
logger.debug("SNKG entities for retriever: {}".format(new_entities))
paper_id_set = set()
for entity in new_entities:
paper_id_set.update(self.paper_client.find_paper_by_entity(entity))
related_paper = related_paper.union(paper_id_set)
logger.debug(f"Entity retrieve {len(paper_id_set)} papers")
logger.debug(f"SN+entity retrieve {len(related_paper)} papers")
## 3. Retrieve papers according to citation co-occurrence
cocite_id_set = set()
if self.use_cocite:
for paper_id in related_paper:
cocite_id_set.update(self.cocite.get_cocite_ids(paper_id))
related_paper = related_paper.union(cocite_id_set)
logger.debug(f"Cocite retrieve {len(cocite_id_set)} papers")
logger.debug(f"SN+entity+cocite retrieve {len(related_paper)} papers")
## 4. Return retrieval results
related_paper = list(related_paper)
result = {
f"background_embedding{self.embedding_postfix}": embedding,
"paper": related_paper,
"entities": entities,
"cocite_paper": list(cocite_id_set),
}
return result
def retrieve(
self, bg, entities, need_evaluate=True, target_paper_id_list=[]
):
"""
Args:
context: string
Return:
list(dict)
"""
if need_evaluate:
if target_paper_id_list is None or len(target_paper_id_list) == 0:
logger.error(
"If you need evaluate retriever, please input target paper is list..."
)
else:
target_paper_id_list = list(set(target_paper_id_list))
logger.debug(f"target paper id list: {target_paper_id_list}")
retrieve_result = self.retrieve_paper(bg, entities)
related_paper_id_list = retrieve_result["paper"]
retrieve_paper_num = len(related_paper_id_list)
logger.info("=== Begin cal related paper score ===")
_, _, score_all_dict = self.cal_related_score(
retrieve_result[f"background_embedding{self.embedding_postfix}"], related_paper_id_list=related_paper_id_list,
type_name=f"background_embedding{self.embedding_postfix}"
)
logger.info("=== End cal related paper score ===")
top_k_matrix = {}
recall = 0
precision = 0
filtered_recall = 0
filtered_precision = 0
label_num = 0
if need_evaluate:
top_k_matrix, label_num, recall, precision = self.eval_related_paper_in_all(
score_all_dict, target_paper_id_list
)
logger.debug("Top K matrix:{}".format(top_k_matrix))
logger.debug("before filter:")
logger.debug(f"Recall: {recall:.3f}")
logger.debug(f"Precision: {precision:.3f}")
logger.info("=== Begin filter related paper score ===")
related_paper = self.filter_related_paper(score_all_dict, self.config.RETRIEVE.all_retrieve_paper_num)
logger.info("=== End filter related paper score ===")
related_paper = self.update_related_paper(related_paper)
result = {
"recall": recall,
"precision": precision,
"filtered_recall": filtered_recall,
"filtered_precision": filtered_precision,
"related_paper": related_paper,
"cocite_paper_id_list": retrieve_result["cocite_paper"],
"related_paper_id_list": related_paper_id_list,
"entities": retrieve_result["entities"],
"top_k_matrix": top_k_matrix,
"gt_reference_num": (
len(target_paper_id_list) if target_paper_id_list is not None else 0
),
"retrieve_paper_num": retrieve_paper_num,
"label_num": label_num,
}
return result
|