import os from utils.paper_retriever import RetrieverFactory from utils.llms_api import APIHelper from utils.paper_client import PaperClient from utils.header import ConfigReader from omegaconf import OmegaConf import click import json from loguru import logger import warnings warnings.filterwarnings("ignore") @click.group() @click.pass_context def main(ctx): """ Evaluate Retriever SN/KG/SNKG """ print("Mode:", ctx.invoked_subcommand) @main.command() @click.option( "-c", "--config-path", default="../configs/datasets.yaml", type=click.File(), required=True, help="Dataset configuration file in YAML", ) @click.option( "--ids-path", default="assets/data/test_acl_2024.json", type=click.File(), required=True, help="Dataset configuration file in YAML", ) @click.option( "-r", "--retriever-name", default="SNKG", type=str, required=True, help="Retrieve method", ) @click.option( "--co-cite", is_flag=True, help="Whether to use co-citation, defaults to False", ) @click.option( "--cluster-to-filter", is_flag=True, help="Whether to use cluster-to-filter, defaults to False", ) @click.option( "--llms-api", default=None, type=str, required=False, help="The LLMS API alias used. If you do not have separate APIs for summarization and generation, you can use this unified setting. This option is ignored when setting the API to be used by summarization and generation separately", ) @click.option( "--sum-api", default=None, type=str, required=False, help="The LLMS API aliases used for summarization. When used, it will invalidate --llms-api", ) @click.option( "--gen-api", default=None, type=str, required=False, help="The LLMS API aliases used for generation. When used, it will invalidate --llms-api", ) def retrieve( config_path, ids_path, retriever_name, co_cite, cluster_to_filter, **kwargs ): config = ConfigReader.load(config_path, **kwargs) log_dir = config.DEFAULT.log_dir if not os.path.exists(log_dir): os.makedirs(log_dir) print(f"Created log directory: {log_dir}") log_file = os.path.join( log_dir, "retriever_eval_{}_cocite-{}_cluster-{}.log".format( retriever_name, co_cite, cluster_to_filter ), ) logger.add(log_file, level=config.DEFAULT.log_level) logger.info("\nretrieve name : {}".format(retriever_name)) logger.info("Loaded configuration:\n{}".format(OmegaConf.to_yaml(config))) api_helper = APIHelper(config) paper_client = PaperClient(config) precision = 0 filtered_precision = 0 recall = 0 filtered_recall = 0 num = 0 gt_reference_num = 0 retrieve_paper_num = 0 label_num = 0 top_k_precision = {p: 0 for p in config.RETRIEVE.top_k_list} top_k_recall = {p: 0 for p in config.RETRIEVE.top_k_list} # Init Retriever rt = RetrieverFactory.get_retriever_factory().create_retriever( retriever_name, config, use_cocite=co_cite, use_cluster_to_filter=cluster_to_filter, ) for line in ids_path: paper = json.loads(line) logger.info("\nbegin generate paper hash id {}".format(paper["hash_id"])) # 1. Get Background paper = paper_client.get_paper_by_id(paper["hash_id"]) if "motivation" in paper.keys(): bg = paper["motivation"] else: logger.error(f"paper hash_id {paper['hash_id']} doesn't have background...") continue if "entities" in paper.keys(): entities = paper["entities"] else: entities = api_helper.generate_entity_list(bg) logger.info("origin entities from background: {}".format(entities)) cite_type = config.RETRIEVE.cite_type if cite_type in paper and len(paper[cite_type]) >= 5: target_paper_id_list = paper[cite_type] else: logger.warning( "hash_id {} cite paper num less than 5 ...".format(paper["hash_id"]) ) continue # 2. Retrieve result = rt.retrieve( bg, entities, need_evaluate=True, target_paper_id_list=target_paper_id_list ) filtered_precision += result["filtered_precision"] precision += result["precision"] filtered_recall += result["filtered_recall"] gt_reference_num += result["gt_reference_num"] retrieve_paper_num += result["retrieve_paper_num"] recall += result["recall"] label_num += result["label_num"] for k, v in result["top_k_matrix"].items(): top_k_recall[k] += v["recall"] top_k_precision[k] += v["precision"] num += 1 if num >= 100: break continue logger.info("=== Finish Report ===") logger.info(f"{'Test Paper Num:':<25} {num}") logger.info(f"{'Average Precision:':<25} {precision/num:.3f}") logger.info(f"{'Average Recall:':<25} {recall/num:.3f}") logger.info(f"{'Average GT Ref Paper Num:':<25} {gt_reference_num/num:.3f}") logger.info(f"{'Average Retrieve Paper Num:':<25} {retrieve_paper_num/num:.3f}") logger.info(f"{'Average Label Num:':<25} {label_num/num:.3f}") # Print Eval Result logger.info("=== Top-K Metrics ===") logger.info( f"=== USE_COCIT: {co_cite}, USE_CLUSTER_TO_FILTER: {cluster_to_filter} ===" ) logger.info("| Top K | Recall | Precision |") logger.info("|--------|--------|-----------|") for k in config.RETRIEVE.top_k_list: if k <= retrieve_paper_num / num: logger.info( f"| {k:<5} | {top_k_recall[k]/num:.3f} | {top_k_precision[k]/num:.3f} |" ) logger.info("=" * 40) if __name__ == "__main__": main()