r"""_summary_ -*- coding: utf-8 -*- Module : prompt.utils File Name : utils.paper_client Description : paper client, all operations about neo4j database are in PaperClient Creation Date : 2024-11-09 Modification Date : 2024-12-17 Author : Lihui Gu (code), Wenxiao Wang (comments) """ import os import re import json import torch from tqdm import tqdm from neo4j import GraphDatabase from collections import defaultdict, deque from py2neo import Graph, Node, Relationship from loguru import logger class PaperClient: _instance = None _initialized = False def __new__(cls, *args, **kwargs): if cls._instance is None: cls._instance = super(PaperClient, cls).__new__(cls) return cls._instance def __init__(self) -> None: if not self._initialized: self.driver = self.get_neo4j_driver() self.teb_model = None self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") PaperClient._initialized = True def get_neo4j_driver(self): URI = os.environ["NEO4J_URL"] NEO4J_USERNAME = os.environ["NEO4J_USERNAME"] NEO4J_PASSWD = os.environ["NEO4J_PASSWD"] AUTH = (NEO4J_USERNAME, NEO4J_PASSWD) driver = GraphDatabase.driver(URI, auth=AUTH) return driver def update_paper_from_client(self, paper): """Read paper from the database (client), update it info into `paper` Args: paper (str): a paper's hash_id Returns: None """ paper_id = paper.get("hash_id", None) if paper_id is None: return None query = f""" MATCH (p:Paper {{hash_id: {paper_id}}}) RETURN p """ with self.driver.session() as session: result = session.execute_read(lambda tx: tx.run(query).data()) if result: paper_from_client = result[0]["p"] if paper_from_client is not None: paper.update(paper_from_client) def update_papers_from_client(self, paper_id_list): """Read paper from the database (client) Args: paper_id_list (List of str) Returns: List of papers read from the database """ query = """ UNWIND $papers AS paper MATCH (p:Paper {hash_id: paper.hash_id}) RETURN p as result """ paper_data = [ { "hash_id": hash_id, } for hash_id in paper_id_list ] with self.driver.session() as session: result = session.execute_read( lambda tx: tx.run(query, papers=paper_data).data() ) return [r["result"] for r in result] def get_paper_attribute(self, paper_id, attribute_name): """Get some attribute of a certain paper Args: paper_id (str): attribute_name (str): Returns: The certain attribute """ query = f""" MATCH (p:Paper {{hash_id: {paper_id}}}) RETURN p.{attribute_name} AS attributeValue """ with self.driver.session() as session: result = session.execute_read(lambda tx: tx.run(query).data()) if result: return result[0]["attributeValue"] else: logger.error(f"paper id {paper_id} get {attribute_name} failed.") return None def get_papers_attribute(self, paper_id_list, attribute_name): """Get some attribute of a list of papers Args: paper_id (List of str): attribute_name (str): Returns: List of certain attribute """ query = """ UNWIND $paper_ids AS paper_id MATCH (p:Paper {hash_id: paper_id}) RETURN p.hash_id AS hash_id, p[$attribute_name] AS attributeValue """ with self.driver.session() as session: result = session.execute_read( lambda tx: tx.run( query, paper_ids=paper_id_list, attribute_name=attribute_name ).data() ) paper_attributes = [record["attributeValue"] for record in result] return paper_attributes def get_paper_by_attribute(self, attribute_name, anttribute_value): """Get some paper whose `attribute_name` is exactly equal to `anttribute_value` Args: anttribute_name anttribute_value Returns: The first exact match paper object or None """ query = f""" MATCH (p:Paper {{{attribute_name}: '{anttribute_value}'}}) RETURN p """ with self.driver.session() as session: result = session.execute_read(lambda tx: tx.run(query).data()) if result: return result[0]["p"] else: return None def get_paper_from_term(self, entity): """Get paper from entity. The method is so strict that paper.entities must be exactly equal to entity. The method is not used now. Args: entity: Returns: """ if entity is None: return None query = """ MATCH (p:Paper) WHERE p.entity = $entity RETURN p.hash_id as hash_id """ with self.driver.session() as session: result = session.execute_read( lambda tx: tx.run(query, entity=entity).data() ) if result: return [record["hash_id"] for record in result] else: return [] def find_related_entities_by_entity_list( self, entity_names, n=1, k=3, relation_name="related" ): """Find all entities related to an entity name Args: entity_names (List): list of entities n: not used k: entity a and b are related if they co-occure in at least `k` papers Returns: related_entities (List): list of entities who are related with any entity in `entity_names` """ related_entities = set() query = """ UNWIND $batch_entities AS entity_name MATCH (e1:Entity {name: entity_name})-[:RELATED_TO]->(p:Paper)<-[:RELATED_TO]-(e2:Entity) WHERE e1 <> e2 WITH e1, e2, COUNT(p) AS common_papers, entity_name WHERE common_papers > $k RETURN e2.name AS entities, entity_name AS source_entity, common_papers """ with self.driver.session() as session: result = session.execute_read( lambda tx: tx.run(query, batch_entities=entity_names, k=k).data() ) for record in result: entity = record["entities"] related_entities.add(entity) return list(related_entities) def find_entities_by_paper_list(self, hash_ids: list): """Retrieve entities for a list of papers: Args: hash_ids (List of papers): Returns: entity_list (List of List of entities): each item is also a list, meaning all entities from a paper """ query = """ UNWIND $hash_ids AS hash_id MATCH (e:Entity)-[:RELATED_TO]->(p:Paper {hash_id: hash_id}) RETURN hash_id, e.name AS entity_name """ with self.driver.session() as session: result = session.execute_read( lambda tx: tx.run(query, hash_ids=hash_ids).data() ) # 按照每个 hash_id 分组实体 entity_list = [] for record in result: entity_list.append(record["entity_name"]) return entity_list def find_paper_by_entity(self, entity_name): """Find all papers with `entity_name` Args: entity_name (str) Returns: res (List of hash_ids): papers with `entity_name` """ query = """ MATCH (e1:Entity {name: $entity_name})-[:RELATED_TO]->(p:Paper) RETURN p.hash_id AS hash_id """ with self.driver.session() as session: result = session.execute_read( lambda tx: tx.run(query, entity_name=entity_name).data() ) if result: return [record["hash_id"] for record in result] else: return [] # TODO: @云翔 # 增加通过entity返回包含entity语句的功能 def find_sentence_by_entity(self, entity_name): # Return: list(str) return [] def find_sentences_by_entity(self, entity_name): """Find all sentences with a certain `entity_name` Args: entity_name (str) Return: sentences (List of strs): One str concatenates all sentences with `entity_name` in a section E.g. [ "abstract sentence 1 from paper 1.abstract sentence 2 from paper 1", "introduction sentence 1 from paper 1.introduction sentence 2 from paper 1", "methodology sentence 1 from paper 1.", "abstract sentence 1 from paper 2.abstract sentence 2 from paper 2", ... ] """ query = """ MATCH (e:Entity {name: $entity_name})-[:RELATED_TO]->(p:Paper) WHERE p.abstract CONTAINS $entity_name OR p.introduction CONTAINS $entity_name OR p.methodology CONTAINS $entity_name RETURN p.abstract AS abstract, p.introduction AS introduction, p.methodology AS methodology, p.hash_id AS hash_id """ sentences = [] with self.driver.session() as session: result = session.execute_read( lambda tx: tx.run(query, entity_name=entity_name).data() ) for record in result: for key in ["abstract", "introduction", "methodology"]: if record[key]: filtered_sentences = [ sentence.strip() + "." for sentence in record[key].split(".") if entity_name in sentence ] sentences.extend( [ f"{record['hash_id']}: {sentence}" for sentence in filtered_sentences ] ) return sentences def select_paper(self, venue_name, year): """Retrieve a list of papers which published at the `venue_name` in `year` Args: venue_name (str) year (int?) Returns: result (List of paper node) """ query = """ MATCH (n:Paper) where n.year=$year and n.venue_name=$venue_name return n """ with self.driver.session() as session: result = session.execute_read( lambda tx: tx.run(query, year=year, venue_name=venue_name).data() ) if result: return [record["n"] for record in result] else: return [] def add_paper_node(self, paper: dict): """Add a paper node Args: paper (Dict) Returns: None """ if "summary" not in paper.keys(): paper["summary"] = None if "abstract" not in paper.keys(): paper["abstract"] = None if "introduction" not in paper.keys(): paper["introduction"] = None if "reference" not in paper.keys(): paper["reference"] = None if "cite" not in paper.keys(): paper["cite"] = None if "motivation" not in paper.keys(): paper["motivation"] = None if "contribution" not in paper.keys(): paper["contribution"] = None if "methodology" not in paper.keys(): paper["methodology"] = None if "ground_truth" not in paper.keys(): paper["ground_truth"] = None if "reference_filter" not in paper.keys(): paper["reference_filter"] = None if "conclusions" not in paper.keys(): paper["conclusions"] = None query = """ MERGE (p:Paper {hash_id: $hash_id}) ON CREATE SET p.venue_name = $venue_name, p.year = $year, p.title = $title, p.pdf_url = $pdf_url, p.abstract = $abstract, p.introduction = $introduction, p.reference = $reference, p.summary = $summary, p.motivation = $motivation, p.contribution = $contribution, p.methodology = $methodology, p.ground_truth = $ground_truth, p.reference_filter = $reference_filter, p.conclusions = $conclusions ON MATCH SET p.venue_name = $venue_name, p.year = $year, p.title = $title, p.pdf_url = $pdf_url, p.abstract = $abstract, p.introduction = $introduction, p.reference = $reference, p.summary = $summary, p.motivation = $motivation, p.contribution = $contribution, p.methodology = $methodology, p.ground_truth = $ground_truth, p.reference_filter = $reference_filter, p.conclusions = $conclusions RETURN p """ with self.driver.session() as session: result = session.execute_write( lambda tx: tx.run( query, hash_id=paper["hash_id"], venue_name=paper["venue_name"], year=paper["year"], title=paper["title"], pdf_url=paper["pdf_url"], abstract=paper["abstract"], introduction=paper["introduction"], reference=paper["reference"], summary=paper["summary"], motivation=paper["motivation"], contribution=paper["contribution"], methodology=paper["methodology"], ground_truth=paper["ground_truth"], reference_filter=paper["reference_filter"], conclusions=paper["conclusions"], ).data() ) def check_entity_node_count(self, hash_id: int): """Whether a paper has more than `3` entities Args: hash_id: a paper's hash_id Returns: True if has <= 2 entitis, False otherwise """ query_check_count = """ MATCH (e:Entity)-[:RELATED_TO]->(p:Paper {hash_id: $hash_id}) RETURN count(e) AS entity_count """ with self.driver.session() as session: # Check the number of related entities result = session.execute_read( lambda tx: tx.run(query_check_count, hash_id=hash_id).data() ) if result[0]["entity_count"] > 3: return False return True def add_entity_node(self, hash_id: int, entities: list): """Add a entity node, and link it to its paper Args: hash_id: a paper's id entities: a paper's all entities Returns: None """ query = """ MERGE (e:Entity {name: $entity_name}) WITH e MATCH (p:Paper {hash_id: $hash_id}) MERGE (e)-[:RELATED_TO]->(p) RETURN e, p """ with self.driver.session() as session: for entity_name in entities: result = session.execute_write( lambda tx: tx.run( query, entity_name=entity_name, hash_id=hash_id ).data() ) def add_paper_citation(self, paper: dict): """Add citations for the paper node, set its cite_id_list, entities, and all_cite_id_list `cite_id_list` means citations in the Introduction section `all_cite_id_list` means all citations Args: paper (Dict of a paper) Returns: None """ query = """ MERGE (p:Paper {hash_id: $hash_id}) ON MATCH SET p.cite_id_list = $cite_id_list, p.entities = $entities, p.all_cite_id_list = $all_cite_id_list """ with self.driver.session() as session: result = session.execute_write( lambda tx: tx.run( query, hash_id=paper["hash_id"], cite_id_list=paper["cite_id_list"], entities=paper["entities"], all_cite_id_list=paper["all_cite_id_list"], ).data() ) def insert_new_field(self, hash_id: str, field_name: str, content): if hash_id is not None: query = f""" MATCH (n {{hash_id: $hash_id}}) SET n.{field_name} = $content RETURN n """ with self.driver.session() as session: result = session.execute_write( lambda tx: tx.run( query, hash_id=hash_id, content=content ).data() ) return result else: return None def update_paper_embedding( self, embedding_model, hash_id=None, batch_size=512, name="abstract", postfix="" ): """Extract paper embedding and store in the database Args: embedding_model (TODO: what model?): an pytorch embedding model hash_id (str): add embedding for a paper if hash_id is not None. Otherwise, all papers will be handled with a batch size of 512 batch_size: if hash_id is None, all papers will be processed with `batch_size` """ if hash_id is not None: query = f""" MATCH (p:Paper {{hash_id: $hash_id}}) WHERE p.{name} IS NOT NULL RETURN p.{name} AS context, p.hash_id AS hash_id, p.title AS title """ with self.driver.session() as session: results = session.execute_write( lambda tx: tx.run(query, hash_id=hash_id).data() ) # contexts = [result["title"] + result["context"] for result in results] if name == "abstract": contexts = [result["title"] + result["context"] for result in results] else: contexts = [result["context"] for result in results] paper_ids = [result["hash_id"] for result in results] context_embeddings = embedding_model.encode( contexts, convert_to_tensor=True, device=self.device ) query = f""" MERGE (p:Paper {{hash_id: $hash_id}}) ON CREATE SET p.{name}_embedding{postfix} = $embedding ON MATCH SET p.{name}_embedding{postfix} = $embedding """ for idx, hash_id in tqdm(enumerate(paper_ids)): embedding = ( context_embeddings[idx].detach().cpu().numpy().flatten().tolist() ) with self.driver.session() as session: results = session.execute_write( lambda tx: tx.run( query, hash_id=hash_id, embedding=embedding ).data() ) return offset = 0 while True: query = f""" MATCH (p:Paper) WHERE p.{name} IS NOT NULL RETURN p.{name} AS context, p.hash_id AS hash_id, p.title AS title SKIP $offset LIMIT $batch_size """ with self.driver.session() as session: results = session.execute_write( lambda tx: tx.run( query, offset=offset, batch_size=batch_size ).data() ) if not results: break if name == "abstract": contexts = [result["title"] + result["context"] for result in results] else: contexts = [result["context"] for result in results] paper_ids = [result["hash_id"] for result in results] context_embeddings = embedding_model.encode( contexts, batch_size=batch_size, convert_to_tensor=True, device=self.device, ) write_query = f""" UNWIND $data AS row MERGE (p:Paper {{hash_id: row.hash_id}}) ON CREATE SET p.{name}_embedding{postfix} = row.embedding ON MATCH SET p.{name}_embedding{postfix} = row.embedding """ data_to_write = [] context_embeddings = context_embeddings.detach().cpu().tolist() for idx, hash_id in enumerate(paper_ids): data_to_write.append({"hash_id": hash_id, "embedding": context_embeddings[idx]}) with self.driver.session() as session: session.execute_write( lambda tx: tx.run(write_query, data=data_to_write) ) offset += batch_size logger.info(f"== Processed batch starting at offset {offset} ==") def add_paper_abstract_embedding( self, embedding_model, hash_id=None, batch_size=512 ): """Extract paper abstract embedding and store in the database Args: embedding_model (TODO: what model?): an pytorch embedding model hash_id (str): add abstract embedding for a paper if hash_id is not None. Otherwise, all papers will be handled with a batch size of 512 batch_size: if hash_id is None, all papers will be processed with `batch_size` """ if hash_id is not None: query = """ MATCH (p:Paper {hash_id: $hash_id}) WHERE p.abstract IS NOT NULL RETURN p.abstract AS context, p.hash_id AS hash_id, p.title AS title """ with self.driver.session() as session: results = session.execute_write( lambda tx: tx.run(query, hash_id=hash_id).data() ) contexts = [result["title"] + result["context"] for result in results] paper_ids = [result["hash_id"] for result in results] context_embeddings = embedding_model.encode( contexts, convert_to_tensor=True, device=self.device ) query = """ MERGE (p:Paper {hash_id: $hash_id}) ON CREATE SET p.abstract_embedding = $embedding ON MATCH SET p.abstract_embedding = $embedding """ for idx, hash_id in tqdm(enumerate(paper_ids)): embedding = ( context_embeddings[idx].detach().cpu().numpy().flatten().tolist() ) with self.driver.session() as session: results = session.execute_write( lambda tx: tx.run( query, hash_id=hash_id, embedding=embedding ).data() ) return offset = 0 while True: query = f""" MATCH (p:Paper) WHERE p.abstract IS NOT NULL RETURN p.abstract AS context, p.hash_id AS hash_id, p.title AS title SKIP $offset LIMIT $batch_size """ with self.driver.session() as session: results = session.execute_write( lambda tx: tx.run( query, offset=offset, batch_size=batch_size ).data() ) if not results: break contexts = [result["title"] + result["context"] for result in results] paper_ids = [result["hash_id"] for result in results] context_embeddings = embedding_model.encode( contexts, batch_size=batch_size, convert_to_tensor=True, device=self.device, ) write_query = """ UNWIND $data AS row MERGE (p:Paper {hash_id: row.hash_id}) ON CREATE SET p.abstract_embedding = row.embedding ON MATCH SET p.abstract_embedding = row.embedding """ data_to_write = [] for idx, hash_id in enumerate(paper_ids): embedding = ( context_embeddings[idx].detach().cpu().numpy().flatten().tolist() ) data_to_write.append({"hash_id": hash_id, "embedding": embedding}) with self.driver.session() as session: session.execute_write( lambda tx: tx.run(write_query, data=data_to_write) ) offset += batch_size logger.info(f"== Processed batch starting at offset {offset} ==") def add_paper_bg_embedding(self, embedding_model, hash_id=None, batch_size=512): """Extract paper background embedding and store in the database Args: embedding_model (TODO: what model?): an pytorch embedding model hash_id (str): add background embedding for a paper if hash_id is not None. Otherwise, all papers will be handled with a batch size of 512 batch_size: if hash_id is None, all papers will be processed with `batch_size` """ if hash_id is not None: query = """ MATCH (p:Paper {hash_id: $hash_id}) WHERE p.motivation IS NOT NULL RETURN p.motivation AS context, p.hash_id AS hash_id, p.title AS title """ with self.driver.session() as session: results = session.execute_write( lambda tx: tx.run(query, hash_id=hash_id).data() ) contexts = [result["context"] for result in results] paper_ids = [result["hash_id"] for result in results] context_embeddings = embedding_model.encode( contexts, convert_to_tensor=True, device=self.device ) query = """ MERGE (p:Paper {hash_id: $hash_id}) ON CREATE SET p.motivation_embedding = $embedding ON MATCH SET p.motivation_embedding = $embedding """ for idx, hash_id in tqdm(enumerate(paper_ids)): embedding = ( context_embeddings[idx].detach().cpu().numpy().flatten().tolist() ) with self.driver.session() as session: results = session.execute_write( lambda tx: tx.run( query, hash_id=hash_id, embedding=embedding ).data() ) return offset = 0 while True: query = f""" MATCH (p:Paper) WHERE p.motivation IS NOT NULL RETURN p.motivation AS context, p.hash_id AS hash_id, p.title AS title SKIP $offset LIMIT $batch_size """ with self.driver.session() as session: results = session.execute_write( lambda tx: tx.run( query, offset=offset, batch_size=batch_size ).data() ) if not results: break contexts = [result["title"] + result["context"] for result in results] paper_ids = [result["hash_id"] for result in results] context_embeddings = embedding_model.encode( contexts, batch_size=batch_size, convert_to_tensor=True, device=self.device, ) write_query = """ UNWIND $data AS row MERGE (p:Paper {hash_id: row.hash_id}) ON CREATE SET p.motivation_embedding = row.embedding ON MATCH SET p.motivation_embedding = row.embedding """ data_to_write = [] for idx, hash_id in enumerate(paper_ids): embedding = ( context_embeddings[idx].detach().cpu().numpy().flatten().tolist() ) data_to_write.append({"hash_id": hash_id, "embedding": embedding}) with self.driver.session() as session: session.execute_write( lambda tx: tx.run(write_query, data=data_to_write) ) offset += batch_size logger.info(f"== Processed batch starting at offset {offset} ==") def add_paper_contribution_embedding( self, embedding_model, hash_id=None, batch_size=512 ): """Extract paper contribution embedding and store in the database Args: embedding_model (TODO: what model?): an pytorch embedding model hash_id (str): add contribution embedding for a paper if hash_id is not None. Otherwise, all papers will be handled with a batch size of 512 batch_size: if hash_id is None, all papers will be processed with `batch_size` """ if hash_id is not None: query = """ MATCH (p:Paper {hash_id: $hash_id}) WHERE p.contribution IS NOT NULL RETURN p.contribution AS context, p.hash_id AS hash_id, p.title AS title """ with self.driver.session() as session: results = session.execute_write( lambda tx: tx.run(query, hash_id=hash_id).data() ) contexts = [result["context"] for result in results] paper_ids = [result["hash_id"] for result in results] context_embeddings = embedding_model.encode( contexts, convert_to_tensor=True, device=self.device ) query = """ MERGE (p:Paper {hash_id: $hash_id}) ON CREATE SET p.contribution_embedding = $embedding ON MATCH SET p.contribution_embedding = $embedding """ for idx, hash_id in tqdm(enumerate(paper_ids)): embedding = ( context_embeddings[idx].detach().cpu().numpy().flatten().tolist() ) with self.driver.session() as session: results = session.execute_write( lambda tx: tx.run( query, hash_id=hash_id, embedding=embedding ).data() ) return offset = 0 while True: query = f""" MATCH (p:Paper) WHERE p.contribution IS NOT NULL RETURN p.contribution AS context, p.hash_id AS hash_id, p.title AS title SKIP $offset LIMIT $batch_size """ with self.driver.session() as session: results = session.execute_write( lambda tx: tx.run( query, offset=offset, batch_size=batch_size ).data() ) if not results: break contexts = [result["context"] for result in results] paper_ids = [result["hash_id"] for result in results] context_embeddings = embedding_model.encode( contexts, batch_size=batch_size, convert_to_tensor=True, device=self.device, ) write_query = """ UNWIND $data AS row MERGE (p:Paper {hash_id: row.hash_id}) ON CREATE SET p.contribution_embedding = row.embedding ON MATCH SET p.contribution_embedding = row.embedding """ data_to_write = [] for idx, hash_id in enumerate(paper_ids): embedding = ( context_embeddings[idx].detach().cpu().numpy().flatten().tolist() ) data_to_write.append({"hash_id": hash_id, "embedding": embedding}) with self.driver.session() as session: session.execute_write( lambda tx: tx.run(write_query, data=data_to_write) ) offset += batch_size logger.info(f"== Processed batch starting at offset {offset} ==") def add_paper_summary_embedding( self, embedding_model, hash_id=None, batch_size=512 ): """Extract paper summary embedding and store in the database Args: embedding_model (TODO: what model?): an pytorch embedding model hash_id (str): add summary embedding for a paper if hash_id is not None. Otherwise, all papers will be handled with a batch size of 512 batch_size: if hash_id is None, all papers will be processed with `batch_size` """ if hash_id is not None: query = """ MATCH (p:Paper {hash_id: $hash_id}) WHERE p.summary IS NOT NULL RETURN p.summary AS context, p.hash_id AS hash_id, p.title AS title """ with self.driver.session() as session: results = session.execute_write( lambda tx: tx.run(query, hash_id=hash_id).data() ) contexts = [result["context"] for result in results] paper_ids = [result["hash_id"] for result in results] # context_embeddings are pytorch.Tensor context_embeddings = embedding_model.encode( contexts, convert_to_tensor=True, device=self.device ) query = """ MERGE (p:Paper {hash_id: $hash_id}) ON CREATE SET p.summary_embedding = $embedding ON MATCH SET p.summary_embedding = $embedding """ for idx, hash_id in tqdm(enumerate(paper_ids)): embedding = ( context_embeddings[idx].detach().cpu().numpy().flatten().tolist() ) with self.driver.session() as session: results = session.execute_write( lambda tx: tx.run( query, hash_id=hash_id, embedding=embedding ).data() ) return offset = 0 while True: query = f""" MATCH (p:Paper) WHERE p.summary IS NOT NULL RETURN p.summary AS context, p.hash_id AS hash_id, p.title AS title SKIP $offset LIMIT $batch_size """ with self.driver.session() as session: results = session.execute_write( lambda tx: tx.run( query, offset=offset, batch_size=batch_size ).data() ) if not results: break contexts = [result["context"] for result in results] paper_ids = [result["hash_id"] for result in results] context_embeddings = embedding_model.encode( contexts, batch_size=batch_size, convert_to_tensor=True, device=self.device, ) write_query = """ UNWIND $data AS row MERGE (p:Paper {hash_id: row.hash_id}) ON CREATE SET p.summary_embedding = row.embedding ON MATCH SET p.summary_embedding = row.embedding """ data_to_write = [] for idx, hash_id in enumerate(paper_ids): embedding = ( context_embeddings[idx].detach().cpu().numpy().flatten().tolist() ) data_to_write.append({"hash_id": hash_id, "embedding": embedding}) with self.driver.session() as session: session.execute_write( lambda tx: tx.run(write_query, data=data_to_write) ) offset += batch_size logger.info(f"== Processed batch starting at offset {offset} ==") def cosine_similarity_search(self, embedding, k=1, type_name="embedding"): """Retrieve all papers whose `type_name` embedding is similar to `embedding` (cosine_sim > 0 and return in a descending order) Args: embedding (TODO: type): the embedding to be checked k: only return topk papers with highest similarities type_name: "abstract_embedding", "summary_embedding", etc. Returns: related_paper (List of str): hash_id of retrieved papers """ query = f""" MATCH (paper:Paper) WITH paper, vector.similarity.cosine(paper.{type_name}, $embedding) AS score WHERE score > 0 RETURN paper, score ORDER BY score DESC LIMIT {k} """ with self.driver.session() as session: results = session.execute_read( lambda tx: tx.run(query, embedding=embedding).data() ) related_paper = [] for result in results: related_paper.append(result["paper"]["hash_id"]) return related_paper def create_vector_index(self): """ 适用于Paper节点,这里的语句应该是针对所有数据库里的paper都做索引 针对Paper节点上的是属性 embedding 进行索引 索引向量的维度为384 适用余弦相似度作为计算相似度的方法 """ query = """ CREATE VECTOR INDEX `paper-embeddings` FOR (n:Paper) ON (n.embedding) OPTIONS {indexConfig: { `vector.dimensions`: 384, `vector.similarity_function`: 'cosine' }} """ with self.driver.session() as session: session.execute_write(lambda tx: tx.run(query).data()) def filter_paper_id_list(self, paper_id_list, year="2024"): """Retrieve all papers' ids which released before "year" (not contained) and existed in the database Args: paper_id_list (List of str): a list of paper ids year: the paper before Returns: existing_paper_ids (List of str): paper_ids that satisfy the conditions """ if not paper_id_list: return [] # WHERE p.year < "2024" AND p.venue_name <> "acl" query = """ UNWIND $paper_id_list AS hash_id MATCH (p:Paper {hash_id: hash_id}) WHERE p.year < $year RETURN p.hash_id AS hash_id """ with self.driver.session() as session: result = session.execute_read( lambda tx: tx.run(query, paper_id_list=paper_id_list, year=year).data() ) existing_paper_ids = [record["hash_id"] for record in result] existing_paper_ids = list(set(existing_paper_ids)) return existing_paper_ids def check_index_exists(self): query = "SHOW INDEXES" with self.driver.session() as session: result = session.execute_read(lambda tx: tx.run(query).data()) for record in result: if record["name"] == "paper-embeddings": return True return False def clear_database(self): query = """ MATCH (n) DETACH DELETE n """ with self.driver.session() as session: session.execute_write(lambda tx: tx.run(query).data()) def get_entity_related_paper_num(self, entity_name): query = """ MATCH (e:Entity {name: $entity_name})-[:RELATED_TO]->(p:Paper) WITH COUNT(p) AS PaperCount RETURN PaperCount """ with self.driver.session() as session: result = session.execute_read( lambda tx: tx.run(query, entity_name=entity_name).data() ) paper_num = result[0]["PaperCount"] return paper_num def get_entities_related_paper_num(self, entity_names): query = """ UNWIND $entity_names AS entity_name MATCH (e:Entity {name: entity_name})-[:RELATED_TO]->(p:Paper) WITH entity_name, COUNT(p) AS PaperCount RETURN entity_name, PaperCount """ with self.driver.session() as session: result = session.execute_read( lambda tx: tx.run(query, entity_names=entity_names).data() ) # 将查询结果转化为字典形式:实体名称 -> 论文数量 entity_paper_count = { record["entity_name"]: record["PaperCount"] for record in result } return entity_paper_count def get_entity_text(self): query = """ MATCH (e:Entity)-[:RELATED_TO]->(p:Paper) WHERE p.venue_name = $venue_name and p.year = $year WITH p, collect(e.name) AS entity_names RETURN p, reduce(text = '', name IN entity_names | text + ' ' + name) AS entity_text """ with self.driver.session() as session: result = session.execute_read(lambda tx: tx.run(query).data()) text_list = [record["entity_text"] for record in result] return text_list def get_entity_combinations(self, venue_name, year): def process_paper_relationships( session, entity_name_1, entity_name_2, abstract ): if entity_name_2 < entity_name_1: entity_name_1, entity_name_2 = entity_name_2, entity_name_1 query = """ MATCH (e1:Entity {name: $entity_name_1}) MATCH (e2:Entity {name: $entity_name_2}) MERGE (e1)-[r:CONNECT]->(e2) ON CREATE SET r.strength = 1 ON MATCH SET r.strength = r.strength + 1 """ sentences = re.split(r"(?(p:Paper) WHERE p.venue_name=$venue_name and p.year=$year WITH p, collect(e) as entities UNWIND range(0, size(entities)-2) as i UNWIND range(i+1, size(entities)-1) as j RETURN p.hash_id AS hash_id, entities[i].name AS entity_name_1, entities[j].name AS entity_name_2 """ with self.driver.session() as session: result = session.execute_read( lambda tx: tx.run(query, venue_name=venue_name, year=year).data() ) for record in tqdm(result): paper_id = record["hash_id"] entity_name_1 = record["entity_name_1"] entity_name_2 = record["entity_name_2"] abstract = self.get_paper_attribute(paper_id, "abstract") process_paper_relationships( session, entity_name_1, entity_name_2, abstract ) def build_citemap(self): citemap = defaultdict(set) query = """ MATCH (p:Paper) RETURN p.hash_id AS hash_id, p.cite_id_list AS cite_id_list """ with self.driver.session() as session: results = session.execute_read(lambda tx: tx.run(query).data()) for result in results: hash_id = result["hash_id"] cite_id_list = result["cite_id_list"] if cite_id_list: for cited_id in cite_id_list: citemap[hash_id].add(cited_id) return citemap def neo4j_backup(self): URI = os.environ["NEO4J_URL"] NEO4J_USERNAME = os.environ["NEO4J_USERNAME"] NEO4J_PASSWD = os.environ["NEO4J_PASSWD"] AUTH = (NEO4J_USERNAME, NEO4J_PASSWD) graph = Graph(URI, auth=AUTH) # 创建一个字典来保存数据 # 定义批次大小 data = {"nodes": [], "relationships": []} # 计算数据的总数(例如查询节点总数) total_papers_query = "MATCH (e:Entity)-[:RELATED_TO]->(p:Paper) RETURN COUNT(DISTINCT p) AS count" total_papers = graph.run(total_papers_query).evaluate() print(f"total paper: {total_papers}") query = f""" MATCH (e:Entity)-[r:RELATED_TO]->(p:Paper) RETURN p, e, r """ """ results = graph.run(query) # 处理查询结果 for record in tqdm(results): paper_node = record["p"] entity_node = record["e"] relationship = record["r"] # 将节点数据加入字典 data["nodes"].append( { "id": paper_node.identity, "label": "Paper", "properties": dict(paper_node), } ) data["nodes"].append( { "id": entity_node.identity, "label": "Entity", "properties": dict(entity_node), } ) # 将关系数据加入字典 data["relationships"].append( { "start_node": entity_node.identity, "end_node": paper_node.identity, "type": "RELATED_TO", "properties": dict(relationship), } ) """ query = """ MATCH (p:Paper) WHERE p.venue_name='acl' and p.year='2024' RETURN p """ results = graph.run(query) for record in tqdm(results): paper_node = record["p"] # 将节点数据加入字典 data["nodes"].append( { "id": paper_node.identity, "label": "Paper", "properties": dict(paper_node), } ) # 去除重复节点 # data["nodes"] = [dict(t) for t in {tuple(d.items()) for d in data["nodes"]}] unique_nodes = [] seen = set() for node in tqdm(data["nodes"]): # 将字典项转换为不可变的元组,以便用于集合去重 node_tuple = str(tuple(sorted(node.items()))) if node_tuple not in seen: seen.add(node_tuple) unique_nodes.append(node) data["nodes"] = unique_nodes # 将数据保存为 JSON 文件 with open( "./assets/data/scipip_neo4j_clean_backup.json", "w", encoding="utf-8" ) as f: json.dump(data, f, ensure_ascii=False, indent=4) def neo4j_import_data(self): # clear_database() # 清空数据库,谨慎执行 URI = os.environ["NEO4J_URL"] NEO4J_USERNAME = os.environ["NEO4J_USERNAME"] NEO4J_PASSWD = os.environ["NEO4J_PASSWD"] AUTH = (NEO4J_USERNAME, NEO4J_PASSWD) graph = Graph(URI, auth=AUTH) # 从 JSON 文件中读取数据 with open( "./assets/data/scipip_neo4j_clean_backup.json", "r", encoding="utf-8" ) as f: data = json.load(f) # 创建节点 nodes = {} for node_data in data["nodes"]: label = node_data["label"] properties = node_data["properties"] node = Node(label, **properties) graph.create(node) nodes[node_data["id"]] = node # 创建关系 for relationship_data in data["relationships"]: start_node = nodes[relationship_data["start_node"]] end_node = nodes[relationship_data["end_node"]] properties = relationship_data["properties"] rel_type = relationship_data["type"] relationship = Relationship(start_node, rel_type, end_node, **properties) graph.create(relationship) def get_paper_by_id(self, hash_id): paper = {"hash_id": hash_id} self.update_paper_from_client(paper) return paper if __name__ == "__main__": paper_client = PaperClient() # paper_client.neo4j_backup() paper_client.neo4j_import_data()