Spaces:
Running
on
Zero
Running
on
Zero
from __future__ import annotations | |
import spaces | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from huggingface_hub import whoami | |
# 定义系统提示语 | |
system_prompt = """你是 Skywork-o1,Skywork AI 开发的思维模型,擅长通过深度思考解决涉及数学、编码和逻辑推理的复杂问题。面对用户请求时,你首先会进行一段漫长而深入的思考过程,探索问题的可能解决方案。完成思考后,你会在回复中详细解释解决过程。""" | |
# 初始化模型和分词器 | |
model_name = "Skywork/Skywork-o1-Open-Llama-3.1-8B" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype="auto", | |
device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# 定义生成回复的函数 | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# 构造对话历史 | |
conversation = [{"role": "system", "content": system_message}] | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
conversation.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
conversation.append({"role": "assistant", "content": assistant_msg}) | |
conversation.append({"role": "user", "content": message}) | |
# 构造输入 | |
input_ids = tokenizer.apply_chat_template( | |
conversation, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_tensors="pt" | |
).to(model.device) | |
# 模型生成 | |
generation = model.generate( | |
input_ids=input_ids, | |
max_new_tokens=max_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
pad_token_id=tokenizer.pad_token_id, | |
) | |
# 解码生成内容 | |
completion = tokenizer.decode( | |
generation[0][len(input_ids[0]):], | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=True | |
) | |
return completion | |
# 定义Gradio界面 | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox(value=system_prompt, label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" | |
), | |
], | |
# chatbot_style="default" | |
) | |
def hello(profile: gr.OAuthProfile | None) -> str: | |
if profile is None: | |
return "I don't know you." | |
return f"Hello {profile.name}" | |
def list_organizations(oauth_token: gr.OAuthToken | None) -> str: | |
if oauth_token is None: | |
return "Please deploy this on Spaces and log in to list organizations." | |
org_names = [org["name"] for org in whoami(oauth_token.token)["orgs"]] | |
return f"You belong to {', '.join(org_names)}." | |
with gr.Blocks() as demo: | |
gr.LoginButton() | |
m1 = gr.Markdown() | |
m2 = gr.Markdown() | |
demo.load(hello, inputs=None, outputs=m1) | |
demo.load(list_organizations, inputs=None, outputs=m2) | |
if __name__ == "__main__": | |
demo.launch() | |