|
import math |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
import numpy as np |
|
|
|
|
|
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): |
|
return F.leaky_relu(input + bias, negative_slope) * scale |
|
|
|
|
|
class FusedLeakyReLU(nn.Module): |
|
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): |
|
super().__init__() |
|
self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1)) |
|
self.negative_slope = negative_slope |
|
self.scale = scale |
|
|
|
def forward(self, input): |
|
out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) |
|
return out |
|
|
|
|
|
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): |
|
_, minor, in_h, in_w = input.shape |
|
kernel_h, kernel_w = kernel.shape |
|
|
|
out = input.view(-1, minor, in_h, 1, in_w, 1) |
|
out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0]) |
|
out = out.view(-1, minor, in_h * up_y, in_w * up_x) |
|
|
|
out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) |
|
out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0), |
|
max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ] |
|
|
|
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) |
|
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) |
|
out = F.conv2d(out, w) |
|
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, |
|
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, ) |
|
return out[:, :, ::down_y, ::down_x] |
|
|
|
|
|
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): |
|
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) |
|
|
|
|
|
class PixelNorm(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, input): |
|
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8) |
|
|
|
|
|
class MotionPixelNorm(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, input): |
|
return input * torch.rsqrt(torch.mean(input ** 2, dim=2, keepdim=True) + 1e-8) |
|
|
|
|
|
def make_kernel(k): |
|
k = torch.tensor(k, dtype=torch.float32) |
|
|
|
if k.ndim == 1: |
|
k = k[None, :] * k[:, None] |
|
|
|
k /= k.sum() |
|
|
|
return k |
|
|
|
|
|
class Upsample(nn.Module): |
|
def __init__(self, kernel, factor=2): |
|
super().__init__() |
|
|
|
self.factor = factor |
|
kernel = make_kernel(kernel) * (factor ** 2) |
|
self.register_buffer('kernel', kernel) |
|
|
|
p = kernel.shape[0] - factor |
|
|
|
pad0 = (p + 1) // 2 + factor - 1 |
|
pad1 = p // 2 |
|
|
|
self.pad = (pad0, pad1) |
|
|
|
def forward(self, input): |
|
return upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad) |
|
|
|
|
|
class Downsample(nn.Module): |
|
def __init__(self, kernel, factor=2): |
|
super().__init__() |
|
|
|
self.factor = factor |
|
kernel = make_kernel(kernel) |
|
self.register_buffer('kernel', kernel) |
|
|
|
p = kernel.shape[0] - factor |
|
|
|
pad0 = (p + 1) // 2 |
|
pad1 = p // 2 |
|
|
|
self.pad = (pad0, pad1) |
|
|
|
def forward(self, input): |
|
return upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad) |
|
|
|
|
|
class Blur(nn.Module): |
|
def __init__(self, kernel, pad, upsample_factor=1): |
|
super().__init__() |
|
|
|
kernel = make_kernel(kernel) |
|
|
|
if upsample_factor > 1: |
|
kernel = kernel * (upsample_factor ** 2) |
|
|
|
self.register_buffer('kernel', kernel) |
|
|
|
self.pad = pad |
|
|
|
def forward(self, input): |
|
return upfirdn2d(input, self.kernel, pad=self.pad) |
|
|
|
|
|
class EqualConv2d(nn.Module): |
|
def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True): |
|
super().__init__() |
|
|
|
self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size)) |
|
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) |
|
|
|
self.stride = stride |
|
self.padding = padding |
|
|
|
if bias: |
|
self.bias = nn.Parameter(torch.zeros(out_channel)) |
|
else: |
|
self.bias = None |
|
|
|
def forward(self, input): |
|
|
|
return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding, ) |
|
|
|
def __repr__(self): |
|
return ( |
|
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' |
|
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' |
|
) |
|
|
|
|
|
class EqualLinear(nn.Module): |
|
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None): |
|
super().__init__() |
|
|
|
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) |
|
|
|
if bias: |
|
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) |
|
else: |
|
self.bias = None |
|
|
|
self.activation = activation |
|
|
|
self.scale = (1 / math.sqrt(in_dim)) * lr_mul |
|
self.lr_mul = lr_mul |
|
|
|
def forward(self, input): |
|
|
|
if self.activation: |
|
out = F.linear(input, self.weight * self.scale) |
|
out = fused_leaky_relu(out, self.bias * self.lr_mul) |
|
else: |
|
out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul) |
|
|
|
return out |
|
|
|
def __repr__(self): |
|
return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})') |
|
|
|
|
|
class ScaledLeakyReLU(nn.Module): |
|
def __init__(self, negative_slope=0.2): |
|
super().__init__() |
|
|
|
self.negative_slope = negative_slope |
|
|
|
def forward(self, input): |
|
return F.leaky_relu(input, negative_slope=self.negative_slope) |
|
|
|
|
|
class ModulatedConv2d(nn.Module): |
|
def __init__(self, in_channel, out_channel, kernel_size, style_dim, demodulate=True, upsample=False, |
|
downsample=False, blur_kernel=[1, 3, 3, 1], ): |
|
super().__init__() |
|
|
|
self.eps = 1e-8 |
|
self.kernel_size = kernel_size |
|
self.in_channel = in_channel |
|
self.out_channel = out_channel |
|
self.upsample = upsample |
|
self.downsample = downsample |
|
|
|
if upsample: |
|
factor = 2 |
|
p = (len(blur_kernel) - factor) - (kernel_size - 1) |
|
pad0 = (p + 1) // 2 + factor - 1 |
|
pad1 = p // 2 + 1 |
|
|
|
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor) |
|
|
|
if downsample: |
|
factor = 2 |
|
p = (len(blur_kernel) - factor) + (kernel_size - 1) |
|
pad0 = (p + 1) // 2 |
|
pad1 = p // 2 |
|
|
|
self.blur = Blur(blur_kernel, pad=(pad0, pad1)) |
|
|
|
fan_in = in_channel * kernel_size ** 2 |
|
self.scale = 1 / math.sqrt(fan_in) |
|
self.padding = kernel_size // 2 |
|
|
|
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)) |
|
|
|
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) |
|
self.demodulate = demodulate |
|
|
|
def __repr__(self): |
|
return ( |
|
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, ' |
|
f'upsample={self.upsample}, downsample={self.downsample})' |
|
) |
|
|
|
def forward(self, input, style): |
|
batch, in_channel, height, width = input.shape |
|
|
|
style = self.modulation(style).view(batch, 1, in_channel, 1, 1) |
|
weight = self.scale * self.weight * style |
|
|
|
if self.demodulate: |
|
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8) |
|
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1) |
|
|
|
weight = weight.view(batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size) |
|
|
|
if self.upsample: |
|
input = input.view(1, batch * in_channel, height, width) |
|
weight = weight.view(batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size) |
|
weight = weight.transpose(1, 2).reshape(batch * in_channel, self.out_channel, self.kernel_size, |
|
self.kernel_size) |
|
out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch) |
|
_, _, height, width = out.shape |
|
out = out.view(batch, self.out_channel, height, width) |
|
out = self.blur(out) |
|
elif self.downsample: |
|
input = self.blur(input) |
|
_, _, height, width = input.shape |
|
input = input.view(1, batch * in_channel, height, width) |
|
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) |
|
_, _, height, width = out.shape |
|
out = out.view(batch, self.out_channel, height, width) |
|
else: |
|
input = input.view(1, batch * in_channel, height, width) |
|
out = F.conv2d(input, weight, padding=self.padding, groups=batch) |
|
_, _, height, width = out.shape |
|
out = out.view(batch, self.out_channel, height, width) |
|
|
|
return out |
|
|
|
|
|
class NoiseInjection(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
self.weight = nn.Parameter(torch.zeros(1)) |
|
|
|
def forward(self, image, noise=None): |
|
|
|
if noise is None: |
|
return image |
|
else: |
|
return image + self.weight * noise |
|
|
|
|
|
class ConstantInput(nn.Module): |
|
def __init__(self, channel, size=4): |
|
super().__init__() |
|
|
|
self.input = nn.Parameter(torch.randn(1, channel, size, size)) |
|
|
|
def forward(self, input): |
|
batch = input.shape[0] |
|
out = self.input.repeat(batch, 1, 1, 1) |
|
|
|
return out |
|
|
|
|
|
class StyledConv(nn.Module): |
|
def __init__(self, in_channel, out_channel, kernel_size, style_dim, upsample=False, blur_kernel=[1, 3, 3, 1], |
|
demodulate=True): |
|
super().__init__() |
|
|
|
self.conv = ModulatedConv2d( |
|
in_channel, |
|
out_channel, |
|
kernel_size, |
|
style_dim, |
|
upsample=upsample, |
|
blur_kernel=blur_kernel, |
|
demodulate=demodulate, |
|
) |
|
|
|
self.noise = NoiseInjection() |
|
self.activate = FusedLeakyReLU(out_channel) |
|
|
|
def forward(self, input, style, noise=None): |
|
out = self.conv(input, style) |
|
out = self.noise(out, noise=noise) |
|
out = self.activate(out) |
|
|
|
return out |
|
|
|
|
|
class ConvLayer(nn.Sequential): |
|
def __init__( |
|
self, |
|
in_channel, |
|
out_channel, |
|
kernel_size, |
|
downsample=False, |
|
blur_kernel=[1, 3, 3, 1], |
|
bias=True, |
|
activate=True, |
|
): |
|
layers = [] |
|
|
|
if downsample: |
|
factor = 2 |
|
p = (len(blur_kernel) - factor) + (kernel_size - 1) |
|
pad0 = (p + 1) // 2 |
|
pad1 = p // 2 |
|
|
|
layers.append(Blur(blur_kernel, pad=(pad0, pad1))) |
|
|
|
stride = 2 |
|
self.padding = 0 |
|
|
|
else: |
|
stride = 1 |
|
self.padding = kernel_size // 2 |
|
|
|
layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride, |
|
bias=bias and not activate)) |
|
|
|
if activate: |
|
if bias: |
|
layers.append(FusedLeakyReLU(out_channel)) |
|
else: |
|
layers.append(ScaledLeakyReLU(0.2)) |
|
|
|
super().__init__(*layers) |
|
|
|
|
|
class ToRGB(nn.Module): |
|
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]): |
|
super().__init__() |
|
|
|
if upsample: |
|
self.upsample = Upsample(blur_kernel) |
|
|
|
self.conv = ConvLayer(in_channel, 3, 1) |
|
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) |
|
|
|
def forward(self, input, skip=None): |
|
out = self.conv(input) |
|
out = out + self.bias |
|
|
|
if skip is not None: |
|
skip = self.upsample(skip) |
|
out = out + skip |
|
|
|
return out |
|
|
|
|
|
class ToFlow(nn.Module): |
|
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]): |
|
super().__init__() |
|
|
|
if upsample: |
|
self.upsample = Upsample(blur_kernel) |
|
|
|
self.style_dim = style_dim |
|
self.in_channel = in_channel |
|
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False) |
|
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) |
|
|
|
def forward(self, input, style, feat, skip=None): |
|
out = self.conv(input, style) |
|
out = out + self.bias |
|
|
|
|
|
xs = np.linspace(-1, 1, input.size(2)) |
|
|
|
xs = np.meshgrid(xs, xs) |
|
xs = np.stack(xs, 2) |
|
|
|
xs = torch.tensor(xs, requires_grad=False).float().unsqueeze(0).repeat(input.size(0), 1, 1, 1).to(input.device) |
|
|
|
if skip is not None: |
|
skip = self.upsample(skip) |
|
out = out + skip |
|
|
|
sampler = torch.tanh(out[:, 0:2, :, :]) |
|
mask = torch.sigmoid(out[:, 2:3, :, :]) |
|
flow = sampler.permute(0, 2, 3, 1) + xs |
|
|
|
feat_warp = F.grid_sample(feat, flow) * mask |
|
|
|
return feat_warp, feat_warp + input * (1.0 - mask), out |
|
|
|
|
|
class Direction(nn.Module): |
|
def __init__(self, motion_dim): |
|
super(Direction, self).__init__() |
|
|
|
self.weight = nn.Parameter(torch.randn(512, motion_dim)) |
|
|
|
def forward(self, input): |
|
|
|
|
|
weight = self.weight + 1e-8 |
|
Q, R = torch.qr(weight) |
|
|
|
if input is None: |
|
return Q |
|
else: |
|
input_diag = torch.diag_embed(input) |
|
out = torch.matmul(input_diag, Q.T) |
|
out = torch.sum(out, dim=1) |
|
|
|
return out |
|
|
|
class Synthesis(nn.Module): |
|
def __init__(self, size, style_dim, motion_dim, blur_kernel=[1, 3, 3, 1], channel_multiplier=1): |
|
super(Synthesis, self).__init__() |
|
|
|
self.size = size |
|
self.style_dim = style_dim |
|
self.motion_dim = motion_dim |
|
|
|
self.direction = Direction(motion_dim) |
|
|
|
self.channels = { |
|
4: 512, |
|
8: 512, |
|
16: 512, |
|
32: 512, |
|
64: 256 * channel_multiplier, |
|
128: 128 * channel_multiplier, |
|
256: 64 * channel_multiplier, |
|
512: 32 * channel_multiplier, |
|
1024: 16 * channel_multiplier, |
|
} |
|
|
|
self.input = ConstantInput(self.channels[4]) |
|
self.conv1 = StyledConv(self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel) |
|
self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False) |
|
|
|
self.log_size = int(math.log(size, 2)) |
|
self.num_layers = (self.log_size - 2) * 2 + 1 |
|
|
|
self.convs = nn.ModuleList() |
|
self.upsamples = nn.ModuleList() |
|
self.to_rgbs = nn.ModuleList() |
|
self.to_flows = nn.ModuleList() |
|
|
|
in_channel = self.channels[4] |
|
|
|
for i in range(3, self.log_size + 1): |
|
out_channel = self.channels[2 ** i] |
|
|
|
self.convs.append(StyledConv(in_channel, out_channel, 3, style_dim, upsample=True, |
|
blur_kernel=blur_kernel)) |
|
self.convs.append(StyledConv(out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel)) |
|
self.to_rgbs.append(ToRGB(out_channel, style_dim)) |
|
|
|
self.to_flows.append(ToFlow(out_channel, style_dim)) |
|
|
|
in_channel = out_channel |
|
|
|
self.n_latent = self.log_size * 2 - 2 |
|
|
|
def forward(self, source_before_decoupling, target_motion, feats): |
|
|
|
directions = self.direction(target_motion) |
|
latent = source_before_decoupling + directions |
|
|
|
inject_index = self.n_latent |
|
latent = latent.unsqueeze(1).repeat(1, inject_index, 1) |
|
|
|
out = self.input(latent) |
|
out = self.conv1(out, latent[:, 0]) |
|
|
|
i = 1 |
|
for conv1, conv2, to_rgb, to_flow, feat in zip(self.convs[::2], self.convs[1::2], self.to_rgbs, |
|
self.to_flows, feats): |
|
out = conv1(out, latent[:, i]) |
|
out = conv2(out, latent[:, i + 1]) |
|
if out.size(2) == 8: |
|
out_warp, out, skip_flow = to_flow(out, latent[:, i + 2], feat) |
|
skip = to_rgb(out_warp) |
|
else: |
|
out_warp, out, skip_flow = to_flow(out, latent[:, i + 2], feat, skip_flow) |
|
skip = to_rgb(out_warp, skip) |
|
i += 2 |
|
|
|
img = skip |
|
|
|
return img |
|
|
|
|
|
|
|
|