File size: 13,250 Bytes
edb59e5 3ef7ee3 edb59e5 5ded4bc 6538615 395fc4a edb59e5 395fc4a edb59e5 3ef7ee3 f9fbc8e 3ef7ee3 9aa1233 3ef7ee3 edb59e5 3ef7ee3 edb59e5 5aa1fe3 395fc4a edb59e5 5aa1fe3 edb59e5 5ded4bc edb59e5 3ef7ee3 5ded4bc edb59e5 be44f14 3ef7ee3 be44f14 5ded4bc be44f14 edb59e5 5ded4bc edb59e5 3ef7ee3 edb59e5 395fc4a edb59e5 f9fbc8e edb59e5 b2da2fd edb59e5 5ded4bc 395fc4a 3ef7ee3 f9fbc8e 6538615 395fc4a 3ef7ee3 edb59e5 3ef7ee3 edb59e5 f9fbc8e 3ef7ee3 f9fbc8e 3ef7ee3 f9fbc8e 395fc4a 3ef7ee3 f9fbc8e 3ef7ee3 f9fbc8e 3ef7ee3 6538615 3ef7ee3 395fc4a 3ef7ee3 395fc4a 5ded4bc edb59e5 3ef7ee3 edb59e5 3ef7ee3 edb59e5 3ef7ee3 edb59e5 3ef7ee3 edb59e5 3ef7ee3 edb59e5 395fc4a edb59e5 3ef7ee3 edb59e5 395fc4a edb59e5 3ef7ee3 edb59e5 395fc4a edb59e5 3ef7ee3 edb59e5 395fc4a edb59e5 e8ade9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import os
import gc
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, field_validator
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig,
StoppingCriteriaList,
StoppingCriteria,
pipeline
)
import uvicorn
import asyncio
from io import BytesIO
import soundfile as sf
import traceback
# --- Bloque para limitar la RAM al 1% (s贸lo en entornos Unix) ---
try:
import psutil
import resource
total_memory = psutil.virtual_memory().total
limit = int(total_memory * 90.0) # 1% del total en bytes # Correcci贸n: Usar 0.01 para 1%
resource.setrlimit(resource.RLIMIT_AS, (limit, limit))
print(f"Memory limit set to {limit} bytes (1% of total system memory).") # Imprimir para verificar el l铆mite aplicado
except Exception as e:
print("No se pudo establecer el l铆mite de memoria:", e)
# --- Fin del bloque de limitaci贸n de RAM ---
app = FastAPI()
# Funci贸n as铆ncrona para limpiar la memoria (RAM y cach茅 CUDA)
async def cleanup_memory(device: str):
gc.collect()
if device == "cuda":
torch.cuda.empty_cache()
# Espera breve para permitir la liberaci贸n de memoria
await asyncio.sleep(0.01)
class GenerateRequest(BaseModel):
model_name: str
input_text: str = ""
task_type: str
temperature: float = 1.0
max_new_tokens: int = 10
stream: bool = True
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = True
chunk_delay: float = 0.0
stop_sequences: list[str] = []
chunk_token_limit: int = 10000000000 # Nuevo par谩metro para limitar tokens por chunk
@field_validator("model_name")
def model_name_cannot_be_empty(cls, v):
if not v:
raise ValueError("model_name cannot be empty.")
return v
@field_validator("task_type")
def task_type_must_be_valid(cls, v):
valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]
if v not in valid_types:
raise ValueError(f"task_type must be one of: {valid_types}")
return v
class LocalModelLoader:
def __init__(self):
self.loaded_models = {}
async def load_model_and_tokenizer(self, model_name):
# Se utiliza el modelo indicado por el usuario
if model_name in self.loaded_models:
return self.loaded_models[model_name]
try:
config = AutoConfig.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, config=config)
# Se usa torch_dtype=torch.float16 para reducir la huella en memoria (si es posible)
model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=torch.float16)
# Ajuste del token de relleno si es necesario
if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id
self.loaded_models[model_name] = (model, tokenizer)
return model, tokenizer
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
model_loader = LocalModelLoader()
class StopOnTokens(StoppingCriteria):
def __init__(self, stop_token_ids: list[int]):
self.stop_token_ids = stop_token_ids
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
for stop_id in self.stop_token_ids:
if input_ids[0][-1] == stop_id:
return True
return False
@app.post("/generate")
async def generate(request: GenerateRequest):
try:
# Extraer par谩metros del request
model_name = request.model_name
input_text = request.input_text
task_type = request.task_type
temperature = request.temperature
max_new_tokens = request.max_new_tokens
stream = request.stream
top_p = request.top_p
top_k = request.top_k
repetition_penalty = request.repetition_penalty
num_return_sequences = request.num_return_sequences
do_sample = request.do_sample
chunk_delay = request.chunk_delay
stop_sequences = request.stop_sequences
chunk_token_limit = request.chunk_token_limit
model, tokenizer = await model_loader.load_model_and_tokenizer(model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
generation_config = GenerationConfig(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
num_return_sequences=num_return_sequences,
stream=stream, # Add stream=True/False to generation config
)
stop_token_ids = []
if stop_sequences:
stop_token_ids = tokenizer.convert_tokens_to_ids(stop_sequences)
stopping_criteria_list = StoppingCriteriaList([StopOnTokens(stop_token_ids)]) if stop_token_ids else None
if stream:
# Se utiliza StreamingResponse con la funci贸n as铆ncrona que env铆a cada token en tiempo real.
response = StreamingResponse(
stream_text(model, tokenizer, input_text, generation_config, stopping_criteria_list, device, chunk_delay, chunk_token_limit, stopping_criteria_list), # Pass stopping_criteria_list
media_type="text/plain"
)
else:
generated_text = await generate_non_stream(model, tokenizer, input_text, generation_config, stopping_criteria_list, device)
response = StreamingResponse(iter([generated_text]), media_type="text/plain")
await cleanup_memory(device)
return response
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
async def stream_text(model, tokenizer, input_text, generation_config, stopping_criteria_list, device, chunk_delay, chunk_token_limit, stop_criteria): # Accept stop_criteria
"""
Genera tokens de forma as铆ncrona y los env铆a al cliente en tiempo real, dividiendo la respuesta en chunks si excede el l铆mite de tokens.
La generaci贸n se detiene autom谩ticamente al cumplirse los StoppingCriteriaList.
"""
# Limitar la entrada para minimizar el uso de memoria
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=64).to(device)
current_chunk_tokens = 0
current_chunk_text = ""
past_key_values = None # To maintain state for streaming
# Con torch.no_grad() se evita almacenar informaci贸n para gradientes
with torch.no_grad():
input_ids = encoded_input.input_ids
# Generaci贸n manual token por token para control de parada y chunking
while True: # Bucle infinito que se rompe por condiciones de parada
outputs = model(
input_ids,
past_key_values=past_key_values,
use_cache=True, # Important for stateful generation
return_dict=True
)
next_token_logits = outputs.logits[:, -1, :]
# Aplicar sampling para obtener el siguiente token (igual que en generation_config)
if generation_config.do_sample:
# Apply temperature and Top-p/Top-k sampling
next_token_logits = next_token_logits / generation_config.temperature
# Top-k filtering
if generation_config.top_k is not None and generation_config.top_k > 0:
v, _ = torch.topk(next_token_logits, min(generation_config.top_k, next_token_logits.size(-1)))
next_token_logits[next_token_logits < v[:, [-1]]] = -float('Inf')
probs = torch.nn.functional.softmax(next_token_logits, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
# Greedy decoding
next_tokens = torch.argmax(next_token_logits, dim=-1)
# Check stop criteria BEFORE adding token to output
if stop_criteria and stop_criteria(input_ids, next_token_logits): # Check stopping criteria
break # Stop generation if criteria is met
next_tokens = next_tokens.unsqueeze(0) # Reshape to [1, 1] for concat
next_token_text = tokenizer.decode(next_tokens[0], skip_special_tokens=True)
token_count = len(tokenizer.encode(current_chunk_text + next_token_text)) - len(tokenizer.encode(current_chunk_text))
if current_chunk_tokens + token_count > chunk_token_limit:
yield current_chunk_text
current_chunk_text = next_token_text
current_chunk_tokens = token_count
else:
current_chunk_text += next_token_text
current_chunk_tokens += token_count
yield current_chunk_text # Yield every token/chunk
input_ids = torch.cat([input_ids, next_tokens], dim=-1) # Append next token to input_ids for next iteration
past_key_values = outputs.past_key_values # Update past key values for stateful generation
await asyncio.sleep(chunk_delay)
if input_ids.shape[-1] >= generation_config.max_new_tokens + encoded_input.input_ids.shape[-1]: # Check max_new_tokens limit
break # Stop if max_new_tokens is reached
# Asegurar de enviar el 煤ltimo chunk
if current_chunk_text:
yield current_chunk_text
await cleanup_memory(device)
async def generate_non_stream(model, tokenizer, input_text, generation_config, stopping_criteria_list, device, max_length=64):
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
with torch.no_grad():
output = model.generate(
**encoded_input,
generation_config=generation_config,
stopping_criteria=stopping_criteria_list,
return_dict_in_generate=True,
output_scores=True
)
generated_text = tokenizer.decode(output.sequences[0][encoded_input["input_ids"].shape[-1]:], skip_special_tokens=True)
await cleanup_memory(device)
return generated_text
@app.post("/generate-image")
async def generate_image(request: GenerateRequest):
try:
validated_body = request
device = 0 if torch.cuda.is_available() else -1 # pipeline espera int para CUDA
# Ejecutar el pipeline en un hilo separado
image_generator = await asyncio.to_thread(pipeline, "text-to-image", model=validated_body.model_name, device=device)
results = await asyncio.to_thread(image_generator, validated_body.input_text)
image = results[0]
img_byte_arr = BytesIO()
image.save(img_byte_arr, format="PNG")
img_byte_arr.seek(0)
await cleanup_memory("cuda" if device == 0 else "cpu")
return StreamingResponse(img_byte_arr, media_type="image/png")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@app.post("/generate-text-to-speech")
async def generate_text_to_speech(request: GenerateRequest):
try:
validated_body = request
device = 0 if torch.cuda.is_available() else -1
# Ejecutar el pipeline en un hilo separado
tts_generator = await asyncio.to_thread(pipeline, "text-to-speech", model=validated_body.model_name, device=device)
tts_results = await asyncio.to_thread(tts_generator, validated_body.input_text)
audio = tts_results
sampling_rate = tts_generator.sampling_rate
audio_byte_arr = BytesIO()
sf.write(audio_byte_arr, audio, sampling_rate, format='WAV')
audio_byte_arr.seek(0)
await cleanup_memory("cuda" if device == 0 else "cpu")
return StreamingResponse(audio_byte_arr, media_type="audio/wav")
except Exception as e:
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@app.post("/generate-video")
async def generate_video(request: GenerateRequest):
try:
validated_body = request
device = 0 if torch.cuda.is_available() else -1
# Ejecutar el pipeline en un hilo separado
video_generator = await asyncio.to_thread(pipeline, "text-to-video", model=validated_body.model_name, device=device)
video = await asyncio.to_thread(video_generator, validated_body.input_text)
video_byte_arr = BytesIO()
video.save(video_byte_arr)
video_byte_arr.seek(0)
await cleanup_memory("cuda" if device == 0 else "cpu")
return StreamingResponse(video_byte_arr, media_type="video/mp4")
except Exception as e:
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |