Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,8 @@ from transformers import (
|
|
9 |
AutoModelForCausalLM,
|
10 |
AutoTokenizer,
|
11 |
GenerationConfig,
|
12 |
-
StoppingCriteriaList
|
|
|
13 |
)
|
14 |
import uvicorn
|
15 |
import asyncio
|
@@ -120,44 +121,27 @@ async def stream_text(model, tokenizer, input_text, generation_config, stop_sequ
|
|
120 |
|
121 |
stopping_criteria = StoppingCriteriaList([stop_criteria])
|
122 |
|
123 |
-
|
124 |
-
|
|
|
125 |
**encoded_input,
|
126 |
-
|
127 |
-
max_new_tokens=generation_config.max_new_tokens,
|
128 |
-
temperature=generation_config.temperature,
|
129 |
-
top_p=generation_config.top_p,
|
130 |
-
top_k=generation_config.top_k,
|
131 |
-
repetition_penalty=generation_config.repetition_penalty,
|
132 |
-
num_return_sequences=generation_config.num_return_sequences,
|
133 |
stopping_criteria=stopping_criteria,
|
134 |
-
|
135 |
-
return_dict_in_generate=True
|
|
|
136 |
)
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
await asyncio.sleep(chunk_delay)
|
143 |
|
144 |
-
|
145 |
-
|
|
|
146 |
return
|
147 |
|
148 |
-
outputs = model.generate(
|
149 |
-
**encoded_input,
|
150 |
-
do_sample=generation_config.do_sample,
|
151 |
-
max_new_tokens=generation_config.max_new_tokens,
|
152 |
-
temperature=generation_config.temperature,
|
153 |
-
top_p=generation_config.top_p,
|
154 |
-
top_k=generation_config.top_k,
|
155 |
-
repetition_penalty=generation_config.repetition_penalty,
|
156 |
-
num_return_sequences=generation_config.num_return_sequences,
|
157 |
-
stopping_criteria=stopping_criteria,
|
158 |
-
output_scores=True,
|
159 |
-
return_dict_in_generate=True
|
160 |
-
)
|
161 |
|
162 |
@app.post("/generate-image")
|
163 |
async def generate_image(request: GenerateRequest):
|
|
|
9 |
AutoModelForCausalLM,
|
10 |
AutoTokenizer,
|
11 |
GenerationConfig,
|
12 |
+
StoppingCriteriaList,
|
13 |
+
TextIteratorStreamer # Importar TextIteratorStreamer
|
14 |
)
|
15 |
import uvicorn
|
16 |
import asyncio
|
|
|
121 |
|
122 |
stopping_criteria = StoppingCriteriaList([stop_criteria])
|
123 |
|
124 |
+
streamer = TextIteratorStreamer(tokenizer, chunk_delay=chunk_delay, skip_prompt=True) # Inicializar streamer
|
125 |
+
|
126 |
+
generation_kwargs = dict(
|
127 |
**encoded_input,
|
128 |
+
generation_config=generation_config,
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
stopping_criteria=stopping_criteria,
|
130 |
+
streamer=streamer, # Pasar streamer a generate
|
131 |
+
return_dict_in_generate=True,
|
132 |
+
output_scores=True
|
133 |
)
|
134 |
|
135 |
+
async def generate_task():
|
136 |
+
model.generate(**generation_kwargs) # Ejecutar generate en background
|
137 |
+
|
138 |
+
asyncio.create_task(generate_task()) # Iniciar la tarea de generaci贸n
|
|
|
139 |
|
140 |
+
for token in streamer: # Iterar sobre el streamer para obtener tokens uno por uno
|
141 |
+
yield token
|
142 |
+
if stop_sequences and any(stop in token for stop in stop_sequences): # Comprobar stop sequences en cada token
|
143 |
return
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
@app.post("/generate-image")
|
147 |
async def generate_image(request: GenerateRequest):
|