Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,8 +8,6 @@ import gradio as gr
|
|
8 |
import os
|
9 |
from spaces import GPU
|
10 |
from dotenv import load_dotenv
|
11 |
-
import torch
|
12 |
-
from diffusers import DiffusionPipeline
|
13 |
|
14 |
load_dotenv()
|
15 |
|
@@ -39,9 +37,11 @@ model_configs = [
|
|
39 |
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
|
40 |
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
|
41 |
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
|
|
|
42 |
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
|
43 |
{"repo_id": "Ffftdtd5dtft/Hermes-3-Llama-3.1-8B-IQ1_S-GGUF", "filename": "hermes-3-llama-3.1-8b-iq1_s-imat.gguf", "name": "Hermes 3 Llama 3.1-8B"},
|
44 |
{"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf", "name": "Phi 3.5 Mini Instruct"},
|
|
|
45 |
{"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
|
46 |
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"},
|
47 |
{"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"},
|
@@ -88,13 +88,7 @@ def remove_duplicates(text):
|
|
88 |
seen_lines.add(line)
|
89 |
return '\n'.join(unique_lines)
|
90 |
|
91 |
-
|
92 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
93 |
-
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
94 |
-
MAX_SEED = np.iinfo(np.int32).max
|
95 |
-
MAX_IMAGE_SIZE = 2048
|
96 |
-
|
97 |
-
@spaces.GPU()
|
98 |
def generate_model_response(model, inputs):
|
99 |
try:
|
100 |
response = model(inputs)
|
@@ -103,21 +97,6 @@ def generate_model_response(model, inputs):
|
|
103 |
print(f"Error generating model response: {e}")
|
104 |
return ""
|
105 |
|
106 |
-
@spaces.GPU()
|
107 |
-
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4):
|
108 |
-
if randomize_seed:
|
109 |
-
seed = random.randint(0, MAX_SEED)
|
110 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
111 |
-
image = pipe(
|
112 |
-
prompt=prompt,
|
113 |
-
width=width,
|
114 |
-
height=height,
|
115 |
-
num_inference_steps=num_inference_steps,
|
116 |
-
generator=generator,
|
117 |
-
guidance_scale=0.0
|
118 |
-
).images[0]
|
119 |
-
return image, seed
|
120 |
-
|
121 |
def remove_repetitive_responses(responses):
|
122 |
unique_responses = {}
|
123 |
for response in responses:
|
@@ -145,88 +124,15 @@ async def process_message(message):
|
|
145 |
"""
|
146 |
return formatted_response, curl_command
|
147 |
|
148 |
-
examples = [
|
149 |
-
"a tiny astronaut hatching from an egg on the moon",
|
150 |
-
"a cat holding a sign that says hello world",
|
151 |
-
"an anime illustration of a wiener schnitzel",
|
152 |
-
]
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
""
|
160 |
-
|
161 |
-
with gr.Blocks(css=css) as demo:
|
162 |
-
with gr.Column(elem_id="col-container"):
|
163 |
-
gr.Markdown(f"""# FLUX.1 [schnell]
|
164 |
-
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
|
165 |
-
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
|
166 |
-
""")
|
167 |
-
|
168 |
-
with gr.Row():
|
169 |
-
prompt = gr.Text(
|
170 |
-
label="Prompt",
|
171 |
-
show_label=False,
|
172 |
-
max_lines=1,
|
173 |
-
placeholder="Enter your prompt",
|
174 |
-
container=False,
|
175 |
-
)
|
176 |
-
run_button = gr.Button("Run", scale=0)
|
177 |
-
|
178 |
-
result = gr.Image(label="Result", show_label=False)
|
179 |
-
|
180 |
-
with gr.Accordion("Advanced Settings", open=False):
|
181 |
-
seed = gr.Slider(
|
182 |
-
label="Seed",
|
183 |
-
minimum=0,
|
184 |
-
maximum=MAX_SEED,
|
185 |
-
step=1,
|
186 |
-
value=0,
|
187 |
-
)
|
188 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
189 |
-
|
190 |
-
with gr.Row():
|
191 |
-
width = gr.Slider(
|
192 |
-
label="Width",
|
193 |
-
minimum=256,
|
194 |
-
maximum=MAX_IMAGE_SIZE,
|
195 |
-
step=32,
|
196 |
-
value=1024,
|
197 |
-
)
|
198 |
-
height = gr.Slider(
|
199 |
-
label="Height",
|
200 |
-
minimum=256,
|
201 |
-
maximum=MAX_IMAGE_SIZE,
|
202 |
-
step=32,
|
203 |
-
value=1024,
|
204 |
-
)
|
205 |
-
|
206 |
-
with gr.Row():
|
207 |
-
num_inference_steps = gr.Slider(
|
208 |
-
label="Number of inference steps",
|
209 |
-
minimum=1,
|
210 |
-
maximum=50,
|
211 |
-
step=1,
|
212 |
-
value=4,
|
213 |
-
)
|
214 |
-
|
215 |
-
gr.Examples(
|
216 |
-
examples=examples,
|
217 |
-
fn=infer,
|
218 |
-
inputs=[prompt],
|
219 |
-
outputs=[result, seed],
|
220 |
-
cache_examples="lazy"
|
221 |
-
)
|
222 |
-
|
223 |
-
gr.on(
|
224 |
-
triggers=[run_button.click, prompt.submit],
|
225 |
-
fn=infer,
|
226 |
-
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
|
227 |
-
outputs=[result, seed]
|
228 |
-
)
|
229 |
|
230 |
if __name__ == "__main__":
|
231 |
port = int(os.environ.get("PORT", 7860))
|
232 |
-
|
|
|
8 |
import os
|
9 |
from spaces import GPU
|
10 |
from dotenv import load_dotenv
|
|
|
|
|
11 |
|
12 |
load_dotenv()
|
13 |
|
|
|
37 |
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
|
38 |
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
|
39 |
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
|
40 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf", "name": "Meta Llama 3.1-70B"},
|
41 |
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
|
42 |
{"repo_id": "Ffftdtd5dtft/Hermes-3-Llama-3.1-8B-IQ1_S-GGUF", "filename": "hermes-3-llama-3.1-8b-iq1_s-imat.gguf", "name": "Hermes 3 Llama 3.1-8B"},
|
43 |
{"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf", "name": "Phi 3.5 Mini Instruct"},
|
44 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"},
|
45 |
{"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
|
46 |
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"},
|
47 |
{"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"},
|
|
|
88 |
seen_lines.add(line)
|
89 |
return '\n'.join(unique_lines)
|
90 |
|
91 |
+
@GPU(duration=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
def generate_model_response(model, inputs):
|
93 |
try:
|
94 |
response = model(inputs)
|
|
|
97 |
print(f"Error generating model response: {e}")
|
98 |
return ""
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
def remove_repetitive_responses(responses):
|
101 |
unique_responses = {}
|
102 |
for response in responses:
|
|
|
124 |
"""
|
125 |
return formatted_response, curl_command
|
126 |
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
iface = gr.Interface(
|
129 |
+
fn=process_message,
|
130 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."),
|
131 |
+
outputs=[gr.Markdown(), gr.Textbox(label="cURL command")],
|
132 |
+
title="Multi-Model LLM API",
|
133 |
+
description="Enter a message and get responses from multiple LLMs.",
|
134 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
if __name__ == "__main__":
|
137 |
port = int(os.environ.get("PORT", 7860))
|
138 |
+
iface.launch(server_port=port)
|