Spaces:
Runtime error
Runtime error
Hjgugugjhuhjggg
commited on
Commit
•
68928a1
1
Parent(s):
c0c18e3
Update app.py
Browse files
app.py
CHANGED
@@ -94,7 +94,139 @@ def remove_duplicates(text):
|
|
94 |
seen_lines.add(line)
|
95 |
return '\n'.join(unique_lines)
|
96 |
|
97 |
-
@spaces.GPU(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
def generate_model_response(model, inputs):
|
99 |
try:
|
100 |
print(f"Generating response for model: {model}")
|
|
|
94 |
seen_lines.add(line)
|
95 |
return '\n'.join(unique_lines)
|
96 |
|
97 |
+
@spaces.GPU(
|
98 |
+
queue=False,
|
99 |
+
allow_gpu_memory=True,
|
100 |
+
timeout=120,
|
101 |
+
duration=120,
|
102 |
+
gpu_type='Tesla V100',
|
103 |
+
gpu_count=2,
|
104 |
+
gpu_memory_limit='32GB',
|
105 |
+
cpu_limit=4,
|
106 |
+
memory_limit='64GB',
|
107 |
+
retry=True,
|
108 |
+
retry_delay=30,
|
109 |
+
priority='high',
|
110 |
+
disk_limit='100GB',
|
111 |
+
scratch_space='/mnt/scratch',
|
112 |
+
network_bandwidth_limit='200Mbps',
|
113 |
+
internet_access=True,
|
114 |
+
precision='float16',
|
115 |
+
batch_size=128,
|
116 |
+
num_threads=16,
|
117 |
+
logging_level='DEBUG',
|
118 |
+
log_to_file=True,
|
119 |
+
alert_on_failure=True,
|
120 |
+
data_encryption=True,
|
121 |
+
env_variables={'CUDA_VISIBLE_DEVICES': '0'},
|
122 |
+
environment_type='conda',
|
123 |
+
enable_checkpointing=True,
|
124 |
+
resource_limits={'gpu': 'Tesla V100', 'cpu': 8, 'memory': '128GB'},
|
125 |
+
hyperparameter_tuning=True,
|
126 |
+
prefetch_data=True,
|
127 |
+
persistent_storage=True,
|
128 |
+
auto_scaling=True,
|
129 |
+
security_level='high',
|
130 |
+
task_priority='urgent',
|
131 |
+
retries_on_timeout=True,
|
132 |
+
file_system='nfs',
|
133 |
+
custom_metrics={'throughput': '300GB/s', 'latency': '10ms'},
|
134 |
+
gpu_utilization_logging=True,
|
135 |
+
job_isolation='container',
|
136 |
+
failure_strategy='retry',
|
137 |
+
gpu_memory_overcommit=True,
|
138 |
+
cpu_overcommit=True,
|
139 |
+
memory_overcommit=True,
|
140 |
+
enable_optimizations=True,
|
141 |
+
multi_gpu_strategy='data_parallel',
|
142 |
+
model_parallelism=True,
|
143 |
+
quantization='dynamic',
|
144 |
+
pruning='structured',
|
145 |
+
tensor_parallelism=True,
|
146 |
+
mixed_precision_training=True,
|
147 |
+
layerwise_lr_decay=True,
|
148 |
+
warmup_steps=500,
|
149 |
+
learning_rate_scheduler='cosine_annealing',
|
150 |
+
dropout_rate=0.3,
|
151 |
+
weight_decay=0.01,
|
152 |
+
gradient_accumulation_steps=8,
|
153 |
+
mixed_precision_loss_scale=128,
|
154 |
+
tensorboard_logging=True,
|
155 |
+
hyperparameter_search_space={'learning_rate': [1e-5, 1e-3], 'batch_size': [64, 256]},
|
156 |
+
early_stopping=True,
|
157 |
+
early_stopping_patience=10,
|
158 |
+
input_data_pipeline='tf.data',
|
159 |
+
batch_normalization=True,
|
160 |
+
activation_function='relu',
|
161 |
+
optimizer='adam',
|
162 |
+
gradient_clipping=1.0,
|
163 |
+
checkpoint_freq=10,
|
164 |
+
experiment_name='deep_model_training',
|
165 |
+
experiment_tags=['nlp', 'deep_learning'],
|
166 |
+
adaptive_lr=True,
|
167 |
+
learning_rate_max=0.01,
|
168 |
+
learning_rate_min=1e-6,
|
169 |
+
max_steps=100000,
|
170 |
+
tolerance=0.01,
|
171 |
+
logging_frequency=10,
|
172 |
+
profile_gpu=True,
|
173 |
+
profile_cpu=True,
|
174 |
+
debug_mode=True,
|
175 |
+
save_best_model=True,
|
176 |
+
evaluation_metric='accuracy',
|
177 |
+
job_preemption='enabled',
|
178 |
+
preemptible_resources=True,
|
179 |
+
grace_period=60,
|
180 |
+
resource_scheduling='fifo',
|
181 |
+
hyperparameter_optimization_algorithm='bayesian',
|
182 |
+
distributed_training=True,
|
183 |
+
multi_node_training=True,
|
184 |
+
max_retries=5,
|
185 |
+
log_level='INFO',
|
186 |
+
secure_socket_layer=True,
|
187 |
+
data_sharding=True,
|
188 |
+
distributed_optimizer='horovod',
|
189 |
+
mixed_precision_support=True,
|
190 |
+
fault_tolerance=True,
|
191 |
+
external_gpu_resources=True,
|
192 |
+
disk_cache=True,
|
193 |
+
backup_enabled=True,
|
194 |
+
backup_frequency='daily',
|
195 |
+
task_grouping='dynamic',
|
196 |
+
instance_type='high_memory',
|
197 |
+
instance_count=3,
|
198 |
+
task_runtime='hours',
|
199 |
+
adaptive_memory_allocation=True,
|
200 |
+
model_versioning=True,
|
201 |
+
multi_model_support=True,
|
202 |
+
batch_optimization=True,
|
203 |
+
memory_prefetch=True,
|
204 |
+
data_prefetch_threads=16,
|
205 |
+
network_optimization=True,
|
206 |
+
model_parallelism_strategy='pipeline',
|
207 |
+
verbose_logging=True,
|
208 |
+
lock_on_failure=True,
|
209 |
+
data_compression=True,
|
210 |
+
inference_mode='batch',
|
211 |
+
distributed_cache_enabled=True,
|
212 |
+
dynamic_batching=True,
|
213 |
+
model_deployment=True,
|
214 |
+
latency_optimization=True,
|
215 |
+
multi_region_deployment=True,
|
216 |
+
multi_user_support=True,
|
217 |
+
job_scheduling='auto',
|
218 |
+
max_job_count=100,
|
219 |
+
suspend_on_idle=True,
|
220 |
+
hyperparameter_search_algorithm='random',
|
221 |
+
job_priority_scaling=True,
|
222 |
+
quantum_computing_support=True,
|
223 |
+
dynamic_resource_scaling=True,
|
224 |
+
runtime_optimization=True,
|
225 |
+
checkpoint_interval='30min',
|
226 |
+
max_gpu_temperature=80,
|
227 |
+
scale_on_gpu_utilization=True,
|
228 |
+
worker_threads=8
|
229 |
+
)
|
230 |
def generate_model_response(model, inputs):
|
231 |
try:
|
232 |
print(f"Generating response for model: {model}")
|