from pydantic import BaseModel from llama_cpp import Llama from concurrent.futures import ThreadPoolExecutor, as_completed import re import httpx import asyncio import gradio as gr import os from dotenv import load_dotenv import spaces import requests import random from faker import Faker from fastapi import FastAPI, Request from fastapi.responses import JSONResponse from fastapi.middleware.cors import CORSMiddleware from threading import Thread from time import sleep from fastapi.staticfiles import StaticFiles load_dotenv() HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") global_data = { 'models': {}, 'tokens': { 'eos': 'eos_token', 'pad': 'pad_token', 'padding': 'padding_token', 'unk': 'unk_token', 'bos': 'bos_token', 'sep': 'sep_token', 'cls': 'cls_token', 'mask': 'mask_token', 'n_ctx': 'n_ctx_token', 'vocab_size': 'vocab_size_token', 'n_embd': 'n_embd_token', 'n_head': 'n_head_token', 'n_layer': 'n_layer_token', 'n_vocab': 'n_vocab_token', 'block_size': 'block_size_token', 'n_rot': 'n_rot_token', 'rope_dim': 'rope_dim_token', 'rope_scaling': 'rope_scaling_token', 'n_positions': 'n_positions_token', 'use_cache': 'use_cache_token', 'use_parallel_inference': 'use_parallel_inference_token', 'parallel_inference_count': 'parallel_inference_count_token', 'use_mlock': 'use_mlock_token', 'use_mmap': 'use_mmap_token', 'use_cpu': 'use_cpu_token', 'f16_kv': 'f16_kv_token', 'f16_quant': 'f16_quant_token', 'f16_output': 'f16_output_token', 'use_flash_attn': 'use_flash_attn_token', 'max_seq_len': 'max_seq_len_token', 'do_sample': 'do_sample_token', 'top_k': 'top_k_token', 'top_p': 'top_p_token', 'temperature': 'temperature_token', 'num_return_sequences': 'num_return_sequences_token', 'use_repetition_penalty': 'use_repetition_penalty_token', 'repetition_penalty': 'repetition_penalty_token', 'no_repeat_ngram_size': 'no_repeat_ngram_size_token', 'bad_words_ids': 'bad_words_ids_token', 'use_token_logging': 'use_token_logging_token', 'use_tensor_parallel': 'use_tensor_parallel_token', 'tensor_parallel_size': 'tensor_parallel_size_token', 'use_gpu_memory_growth': 'use_gpu_memory_growth_token', 'use_multi_gpu_inference': 'use_multi_gpu_inference_token', 'multi_gpu_inference_count': 'multi_gpu_inference_count_token' } } model_configs = [ {"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"}, {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"}, {"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"}, {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"}, {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"}, {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"}, {"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"}, {"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"}, {"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"}, {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf", "name": "Meta Llama 3.1-70B"}, {"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"}, {"repo_id": "Ffftdtd5dtft/Hermes-3-Llama-3.1-8B-IQ1_S-GGUF", "filename": "hermes-3-llama-3.1-8b-iq1_s-imat.gguf", "name": "Hermes 3 Llama 3.1-8B"}, {"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf", "name": "Phi 3.5 Mini Instruct"}, {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"}, {"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"}, {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"}, {"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"}, {"repo_id": "Ffftdtd5dtft/Mistral-NeMo-Minitron-8B-Base-IQ1_S-GGUF", "filename": "mistral-nemo-minitron-8b-base-iq1_s-imat.gguf", "name": "Mistral NeMo Minitron 8B Base"}, {"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"} ] class ModelManager: def __init__(self): self.models = {} def load_model(self, model_config): if model_config['name'] not in self.models: try: print(f"Loading model {model_config['name']}...") self.models[model_config['name']] = Llama.from_pretrained( repo_id=model_config['repo_id'], filename=model_config['filename'], use_auth_token=HUGGINGFACE_TOKEN ) print(f"Model {model_config['name']} loaded successfully.") except Exception as e: print(f"Error loading model {model_config['name']}: {e}") def load_all_models(self): with ThreadPoolExecutor() as executor: for config in model_configs: executor.submit(self.load_model, config) return self.models model_manager = ModelManager() global_data['models'] = model_manager.load_all_models() class ChatRequest(BaseModel): message: str def normalize_input(input_text): return input_text.strip() def remove_duplicates(text): text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text) text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text) text = text.replace('[/INST]', '') lines = text.split('\n') unique_lines = [] seen_lines = set() for line in lines: if line not in seen_lines: unique_lines.append(line) seen_lines.add(line) return '\n'.join(unique_lines) PROXY_URL = "https://uhhy-fsfsfs.hf.space/valid" def get_random_proxy(): try: response = requests.get(PROXY_URL) proxies = response.text.splitlines() return random.choice(proxies) except Exception as e: print(f"Error fetching proxy: {e}") return None fake = Faker() def generate_fake_ip(): return fake.ipv4() def get_random_user_agent(): user_agents = [ "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7; rv:89.0) Gecko/20100101 Firefox/89.0", "Mozilla/5.0 (X11; Linux x86_64; rv:89.0) Gecko/20100101 Firefox/89.0", "Mozilla/5.0 (iPhone; CPU iPhone OS 14_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.3 Mobile/15E148 Safari/604.1", "Mozilla/5.0 (iPad; CPU OS 14_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.3 Mobile/15E148 Safari/604.1", "Mozilla/5.0 (Android 11; Mobile; rv:89.0) Gecko/89.0 Firefox/89.0" ] return random.choice(user_agents) @spaces.GPU( queue=False, allow_gpu_memory=True, timeout=0, duration=0, gpu_type='Tesla V100', gpu_count=2, gpu_memory_limit='32GB', cpu_limit=4, memory_limit='64GB', retry=True, retry_delay=30, priority='high', disk_limit='100GB', scratch_space='/mnt/scratch', network_bandwidth_limit='200Mbps', internet_access=True, precision='float16', batch_size=128, num_threads=16, logging_level='DEBUG', log_to_file=True, alert_on_failure=True, data_encryption=True, env_variables={'CUDA_VISIBLE_DEVICES': '0'}, environment_type='conda', enable_checkpointing=True, resource_limits={'gpu': 'Tesla V100', 'cpu': 8, 'memory': '128GB'}, hyperparameter_tuning=True, prefetch_data=True, persistent_storage=True, auto_scaling=True, security_level='high', task_priority='urgent', retries_on_timeout=True, file_system='nfs', custom_metrics={'throughput': '300GB/s', 'latency': '10ms'}, gpu_utilization_logging=True, job_isolation='container', failure_strategy='retry', gpu_memory_overcommit=True, cpu_overcommit=True, memory_overcommit=True, enable_optimizations=True, multi_gpu_strategy='data_parallel', model_parallelism=True, quantization='dynamic', pruning='structured', tensor_parallelism=True, mixed_precision_training=True, layerwise_lr_decay=True, warmup_steps=500, learning_rate_scheduler='cosine_annealing', dropout_rate=0.3, weight_decay=0.01, gradient_accumulation_steps=8, mixed_precision_loss_scale=128, tensorboard_logging=True, hyperparameter_search_space={'learning_rate': [1e-5, 1e-3], 'batch_size': [64, 256]}, early_stopping=True, early_stopping_patience=10, input_data_pipeline='tf.data', batch_normalization=True, activation_function='relu', optimizer='adam', gradient_clipping=1.0, checkpoint_freq=10, experiment_name='deep_model_training', experiment_tags=['nlp', 'deep_learning'], adaptive_lr=True, learning_rate_max=0.01, learning_rate_min=1e-6, max_steps=100000, tolerance=0.01, logging_frequency=10, profile_gpu=True, profile_cpu=True, debug_mode=True, save_best_model=True, evaluation_metric='accuracy', job_preemption='enabled', preemptible_resources=True, grace_period=60, resource_scheduling='fifo', hyperparameter_optimization_algorithm='bayesian', distributed_training=True, multi_node_training=True, max_retries=5, log_level='INFO', secure_socket_layer=True, data_sharding=True, distributed_optimizer='horovod', mixed_precision_support=True, fault_tolerance=True, external_gpu_resources=True, disk_cache=True, backup_enabled=True, backup_frequency='daily', task_grouping='dynamic', instance_type='high_memory', instance_count=3, task_runtime='hours', adaptive_memory_allocation=True, model_versioning=True, multi_model_support=True, batch_optimization=True, memory_prefetch=True, data_prefetch_threads=16, network_optimization=True, model_parallelism_strategy='pipeline', verbose_logging=True, lock_on_failure=True, data_compression=True, inference_mode='batch', distributed_cache_enabled=True, dynamic_batching=True, model_deployment=True, latency_optimization=True, multi_region_deployment=True, multi_user_support=True, job_scheduling='auto', max_job_count=100, suspend_on_idle=True, hyperparameter_search_algorithm='random', job_priority_scaling=True, quantum_computing_support=True, dynamic_resource_scaling=True, runtime_optimization=True, checkpoint_interval='30min', max_gpu_temperature=80, scale_on_gpu_utilization=True, worker_threads=8 ) def generate_model_response(model, inputs): try: print(f"Generating response for model: {model}") response = model(inputs) print(f"Response from {model}: {response}") return remove_duplicates(response['choices'][0]['text']) except Exception as e: print(f"Error generating model response from {model}: {e}") return "Error generating response. Please try again later." def remove_repetitive_responses(responses): unique_responses = {} for response in responses: if response not in unique_responses: unique_responses[response] = response return unique_responses async def process_message(message): inputs = normalize_input(message) with ThreadPoolExecutor() as executor: futures = [ executor.submit(generate_model_response, model, inputs) for model in global_data['models'].values() ] responses = [] for future in as_completed(futures): try: response = future.result() responses.append(response) except Exception as e: print(f"Error with model: {e}") responses.append("Error generating response. Please try again later.") unique_responses = remove_repetitive_responses(responses) formatted_response = "" for model, response in unique_responses.items(): formatted_response += f"**{model}:**\n{response}\n\n" curl_command = f""" curl -X POST -H "Content-Type: application/json" \\ -d '{{"message": "{message}"}}' \\ http://localhost:7860/generate """ return formatted_response, curl_command app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) app.mount("/", StaticFiles(directory="public", html=True), name="static") @app.post("/generate") async def generate_response(request: Request): try: data = await request.json() message = data.get("message") if not message: return JSONResponse(status_code=400, content={"error": "Message is required."}) response, _ = await process_message(message) return JSONResponse(content={"response": response}) except Exception as e: print(f"API Error: {e}") return JSONResponse(status_code=500, content={"error": "Internal server error."}) iface = gr.Interface( fn=process_message, inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."), outputs=[gr.Markdown(), gr.Textbox(label="cURL command")], title="Multi-Model LLM API", description="Enter a message and get responses from multiple LLMs.", ) def anonymize_ip(): while True: sleep(0) # Change the sleep time to 0 seconds os.environ['HTTP_X_FORWARDED_FOR'] = generate_fake_ip() os.environ['REMOTE_ADDR'] = generate_fake_ip() Thread(target=anonymize_ip).start() if __name__ == "__main__": port = int(os.environ.get("PORT", 7860)) iface.launch(server_port=port, server_name="0.0.0.0", share=False, auth=None )