File size: 8,245 Bytes
014edf2
eda5cd9
 
5d00129
14bbbee
5d00129
d27b777
 
5d00129
 
d9e405b
 
5d00129
eda5cd9
 
014edf2
14bbbee
 
 
 
014edf2
 
 
 
1949d3a
014edf2
eda5cd9
 
1949d3a
 
14bbbee
1949d3a
5d00129
 
eda5cd9
5d00129
 
 
 
 
 
d9e405b
 
5d00129
 
014edf2
5d00129
014edf2
5d00129
 
14bbbee
5d00129
14bbbee
 
 
5d00129
014edf2
14bbbee
 
d9e405b
14bbbee
 
d9e405b
14bbbee
 
 
 
 
 
99862b8
14bbbee
 
 
5d00129
 
014edf2
1949d3a
eda5cd9
014edf2
eda5cd9
 
 
 
 
 
 
 
 
 
 
 
 
14bbbee
 
 
 
 
 
 
5d00129
 
 
eda5cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
6e677d2
eda5cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
014edf2
 
eda5cd9
014edf2
eda5cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d00129
014edf2
14bbbee
7ab73bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from transformers import (
    AutoConfig,
    pipeline,
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
    StoppingCriteriaList
)
import asyncio
from io import BytesIO

# Diccionario global para almacenar los tokens
token_dict = {}

# Setup para acceder a modelos en Hugging Face o S3
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")

app = FastAPI()

class GenerateRequest(BaseModel):
    model_name: str
    input_text: str
    task_type: str
    temperature: float = 1.0
    max_new_tokens: int = 200
    stream: bool = True
    top_p: float = 1.0
    top_k: int = 50
    repetition_penalty: float = 1.0
    num_return_sequences: int = 1
    do_sample: bool = True
    chunk_delay: float = 0.0
    stop_sequences: list[str] = []

class S3ModelLoader:
    def __init__(self, bucket_name, s3_client):
        self.bucket_name = bucket_name
        self.s3_client = s3_client

    def _get_s3_uri(self, model_name):
        return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
    
    async def load_model_and_tokenizer(self, model_name):
        if model_name in token_dict:
            return token_dict[model_name]
        
        s3_uri = self._get_s3_uri(model_name)
        try:
            model = AutoModelForCausalLM.from_pretrained(s3_uri, local_files_only=True)
            tokenizer = AutoTokenizer.from_pretrained(s3_uri, local_files_only=True)

            if tokenizer.eos_token_id is None:
                tokenizer.eos_token_id = tokenizer.pad_token_id

            token_dict[model_name] = {
                "model": model,
                "tokenizer": tokenizer,
                "pad_token_id": tokenizer.pad_token_id,
                "eos_token_id": tokenizer.eos_token_id
            }

            return token_dict[model_name]
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error loading model: {e}")

model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)

@app.post("/generate")
async def generate(request: GenerateRequest):
    try:
        model_name = request.model_name
        input_text = request.input_text
        temperature = request.temperature
        max_new_tokens = request.max_new_tokens
        stream = request.stream
        top_p = request.top_p
        top_k = request.top_k
        repetition_penalty = request.repetition_penalty
        num_return_sequences = request.num_return_sequences
        do_sample = request.do_sample
        chunk_delay = request.chunk_delay
        stop_sequences = request.stop_sequences

        # Cargar modelo y tokenizer desde el S3
        model_data = await model_loader.load_model_and_tokenizer(model_name)
        model = model_data["model"]
        tokenizer = model_data["tokenizer"]
        pad_token_id = model_data["pad_token_id"]
        eos_token_id = model_data["eos_token_id"]

        device = "cuda" if torch.cuda.is_available() else "cpu"
        model.to(device)

        generation_config = GenerationConfig(
            temperature=temperature,
            max_new_tokens=max_new_tokens,
            top_p=top_p,
            top_k=top_k,
            repetition_penalty=repetition_penalty,
            do_sample=do_sample,
            num_return_sequences=num_return_sequences,
        )

        return StreamingResponse(
            stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay),
            media_type="text/plain"
        )

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")

async def stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay, max_length=2048):
    encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
    input_length = encoded_input["input_ids"].shape[1]
    remaining_tokens = max_length - input_length

    if remaining_tokens <= 0:
        yield ""

    generation_config.max_new_tokens = min(remaining_tokens, generation_config.max_new_tokens)

    def stop_criteria(input_ids, scores):
        decoded_output = tokenizer.decode(int(input_ids[0][-1]), skip_special_tokens=True)
        return decoded_output in stop_sequences

    stopping_criteria = StoppingCriteriaList([stop_criteria])

    output_text = ""
    outputs = model.generate(
        **encoded_input,
        do_sample=generation_config.do_sample,
        max_new_tokens=generation_config.max_new_tokens,
        temperature=generation_config.temperature,
        top_p=generation_config.top_p,
        top_k=generation_config.top_k,
        repetition_penalty=generation_config.repetition_penalty,
        num_return_sequences=generation_config.num_return_sequences,
        stopping_criteria=stopping_criteria,
        output_scores=True,
        return_dict_in_generate=True
    )

    for output in outputs.sequences:
        for token_id in output:
            token = tokenizer.decode(token_id, skip_special_tokens=True)
            yield token
            await asyncio.sleep(chunk_delay)  # Simula el delay entre tokens

        if stop_sequences and any(stop in output_text for stop in stop_sequences):
            yield output_text
            return

        outputs = model.generate(
            **encoded_input,
            do_sample=generation_config.do_sample,
            max_new_tokens=generation_config.max_new_tokens,
            temperature=generation_config.temperature,
            top_p=generation_config.top_p,
            top_k=generation_config.top_k,
            repetition_penalty=generation_config.repetition_penalty,
            num_return_sequences=generation_config.num_return_sequences,
            stopping_criteria=stopping_criteria,
            output_scores=True,
            return_dict_in_generate=True
        )

@app.post("/generate-image")
async def generate_image(request: GenerateRequest):
    try:
        validated_body = request
        device = "cuda" if torch.cuda.is_available() else "cpu"
        
        image_generator = pipeline("text-to-image", model=validated_body.model_name, device=device)
        image = image_generator(validated_body.input_text)[0]

        img_byte_arr = BytesIO()
        image.save(img_byte_arr, format="PNG")
        img_byte_arr.seek(0)

        return StreamingResponse(img_byte_arr, media_type="image/png")

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")

@app.post("/generate-text-to-speech")
async def generate_text_to_speech(request: GenerateRequest):
    try:
        validated_body = request
        device = "cuda" if torch.cuda.is_available() else "cpu"
        
        audio_generator = pipeline("text-to-speech", model=validated_body.model_name, device=device)
        audio = audio_generator(validated_body.input_text)[0]

        audio_byte_arr = BytesIO()
        audio.save(audio_byte_arr)
        audio_byte_arr.seek(0)

        return StreamingResponse(audio_byte_arr, media_type="audio/wav")

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")

@app.post("/generate-video")
async def generate_video(request: GenerateRequest):
    try:
        validated_body = request
        device = "cuda" if torch.cuda.is_available() else "cpu"
        video_generator = pipeline("text-to-video", model=validated_body.model_name, device=device)
        video = video_generator(validated_body.input_text)[0]

        video_byte_arr = BytesIO()
        video.save(video_byte_arr)
        video_byte_arr.seek(0)

        return StreamingResponse(video_byte_arr, media_type="video/mp4")

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)