File size: 7,561 Bytes
410390c
227ec7b
0e63678
410390c
 
0e63678
00a3421
227ec7b
0e63678
 
00a3421
0e63678
 
410390c
 
 
 
0e63678
 
410390c
 
 
 
 
 
 
 
 
 
0e63678
 
 
 
 
 
 
 
 
 
410390c
 
 
 
 
 
 
 
 
 
 
 
 
0e63678
410390c
0e63678
410390c
0e63678
410390c
 
0e63678
 
410390c
0e63678
410390c
0e63678
 
 
 
 
 
 
 
d44fda2
227ec7b
d44fda2
00a3421
d44fda2
299d616
 
0e63678
00a3421
 
299d616
 
0e63678
299d616
 
0e63678
d44fda2
0e63678
 
 
 
 
 
 
 
 
 
d44fda2
410390c
d44fda2
0e63678
 
410390c
227ec7b
d44fda2
0e63678
00a3421
0e63678
 
d44fda2
 
0e63678
 
d44fda2
00a3421
 
0e63678
 
26237b6
0e63678
227ec7b
 
 
 
 
00a3421
0e63678
 
00a3421
26237b6
d44fda2
26237b6
 
227ec7b
0e63678
d44fda2
0e63678
 
227ec7b
410390c
0e63678
410390c
0e63678
 
 
 
410390c
0e63678
 
410390c
0e63678
 
d44fda2
410390c
0e63678
410390c
0e63678
 
 
 
 
 
227ec7b
0e63678
 
 
410390c
 
0e63678
2f5a890
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import json
import logging
import boto3
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from huggingface_hub import hf_hub_download
from tqdm import tqdm
import io

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")

s3_client = boto3.client(
    's3',
    aws_access_key_id=AWS_ACCESS_KEY_ID,
    aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
    region_name=AWS_REGION
)

app = FastAPI()

PIPELINE_MAP = {
    "text-generation": "text-generation",
    "sentiment-analysis": "sentiment-analysis",
    "translation": "translation",
    "fill-mask": "fill-mask",
    "question-answering": "question-answering",
    "text-to-speech": "text-to-speech",
    "text-to-video": "text-to-video",
    "text-to-image": "text-to-image"
}

class S3DirectStream:
    def __init__(self, bucket_name):
        self.s3_client = boto3.client(
            's3',
            aws_access_key_id=AWS_ACCESS_KEY_ID,
            aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
            region_name=AWS_REGION
        )
        self.bucket_name = bucket_name

    def stream_from_s3(self, key):
        try:
            logger.info(f"Descargando {key} desde S3...")
            response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
            return response['Body']
        except self.s3_client.exceptions.NoSuchKey:
            logger.error(f"El archivo {key} no existe en el bucket S3.")
            raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
        except Exception as e:
            logger.error(f"Error al descargar {key} desde S3: {str(e)}")
            raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}")

    def get_model_file_parts(self, model_name):
        try:
            model_prefix = model_name.lower()
            logger.info(f"Obteniendo archivos para el modelo {model_name} desde S3...")
            files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_prefix)
            model_files = [obj['Key'] for obj in files.get('Contents', []) if model_prefix in obj['Key']]
            return model_files
        except Exception as e:
            logger.error(f"Error al obtener archivos del modelo {model_name} desde S3: {e}")
            raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}")

    def load_model_from_s3(self, model_name):
        try:
            model_prefix = model_name.lower()
            model_files = self.get_model_file_parts(model_prefix)

            if not model_files:
                logger.info(f"El modelo {model_name} no est谩 en S3, descargando desde Hugging Face...")
                self.download_and_upload_from_huggingface(model_name)
                model_files = self.get_model_file_parts(model_prefix)

            if not model_files:
                logger.error(f"Archivos del modelo {model_name} no encontrados en S3.")
                raise HTTPException(status_code=404, detail=f"Archivos del modelo {model_name} no encontrados en S3.")

            logger.info(f"Cargando archivos del modelo {model_name}...")
            config_stream = self.stream_from_s3(f"{model_prefix}/config.json")
            config_data = config_stream.read()

            if not config_data:
                logger.error(f"El archivo de configuraci贸n {model_prefix}/config.json est谩 vac铆o.")
                raise HTTPException(status_code=500, detail=f"El archivo de configuraci贸n {model_prefix}/config.json est谩 vac铆o.")
            
            config_text = config_data.decode("utf-8")
            config_json = json.loads(config_text)

            model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_prefix}", config=config_json, from_tf=False)
            return model

        except Exception as e:
            logger.error(f"Error al cargar el modelo desde S3: {e}")
            raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {e}")

    def load_tokenizer_from_s3(self, model_name):
        try:
            logger.info(f"Cargando el tokenizer del modelo {model_name} desde S3...")
            tokenizer_stream = self.stream_from_s3(f"{model_name}/tokenizer.json")
            tokenizer_data = tokenizer_stream.read().decode("utf-8")
            tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}")
            return tokenizer
        except Exception as e:
            logger.error(f"Error al cargar el tokenizer desde S3: {e}")
            raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")

    def download_and_upload_from_huggingface(self, model_name):
        try:
            logger.info(f"Descargando modelo {model_name} desde Hugging Face...")
            files_to_download = hf_hub_download(repo_id=model_name, use_auth_token=HUGGINGFACE_TOKEN, local_dir=model_name)

            for file in tqdm(files_to_download, desc="Subiendo archivos a S3"):
                file_name = os.path.basename(file)
                s3_key = f"{model_name}/{file_name}"
                if not self.file_exists_in_s3(s3_key):
                    self.upload_file_to_s3(file, s3_key)

        except Exception as e:
            logger.error(f"Error al descargar y subir modelo desde Hugging Face: {e}")
            raise HTTPException(status_code=500, detail=f"Error al descargar y subir modelo desde Hugging Face: {e}")

    def upload_file_to_s3(self, file_path, s3_key):
        try:
            with open(file_path, 'rb') as data:
                self.s3_client.put_object(Bucket=self.bucket_name, Key=s3_key, Body=data)
            os.remove(file_path)
            logger.info(f"Archivo {file_path} subido correctamente a S3 y eliminado localmente.")
        except Exception as e:
            logger.error(f"Error al subir archivo a S3: {e}")
            raise HTTPException(status_code=500, detail=f"Error al subir archivo a S3: {e}")

@app.post("/predict/")
async def predict(model_request: dict):
    try:
        model_name = model_request.get("model_name")
        task = model_request.get("pipeline_task")
        input_text = model_request.get("input_text")

        streamer = S3DirectStream(S3_BUCKET_NAME)
        model = streamer.load_model_from_s3(model_name)
        tokenizer = streamer.load_tokenizer_from_s3(model_name)

        if task not in PIPELINE_MAP:
            logger.error("Pipeline task no soportado")
            raise HTTPException(status_code=400, detail="Pipeline task no soportado")

        nlp_pipeline = pipeline(PIPELINE_MAP[task], model=model, tokenizer=tokenizer)

        result = nlp_pipeline(input_text)

        if isinstance(result, dict) and 'file' in result:
            return JSONResponse(content={"file": result['file']})
        else:
            return JSONResponse(content={"result": result})

    except Exception as e:
        logger.error(f"Error al realizar la predicci贸n: {e}")
        raise HTTPException(status_code=500, detail=f"Error al realizar la predicci贸n: {e}")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)