|
from huggingface_hub import HfApi |
|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel, field_validator |
|
import requests |
|
import boto3 |
|
from dotenv import load_dotenv |
|
import os |
|
import uvicorn |
|
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoConfig, TextIteratorStreamer |
|
import safetensors.torch |
|
import torch |
|
from fastapi.responses import StreamingResponse |
|
from tqdm import tqdm |
|
import logging |
|
import json |
|
|
|
load_dotenv() |
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") |
|
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") |
|
AWS_REGION = os.getenv("AWS_REGION") |
|
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") |
|
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") |
|
|
|
s3_client = boto3.client( |
|
's3', |
|
aws_access_key_id=AWS_ACCESS_KEY_ID, |
|
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, |
|
region_name=AWS_REGION |
|
) |
|
|
|
app = FastAPI() |
|
|
|
class DownloadModelRequest(BaseModel): |
|
model_id: str |
|
pipeline_task: str |
|
input_text: str |
|
|
|
@field_validator('model_id') |
|
def validate_model_id(cls, value): |
|
if not value: |
|
raise ValueError("model_id cannot be empty") |
|
return value |
|
|
|
class S3DirectStream: |
|
def __init__(self, bucket_name): |
|
self.s3_client = boto3.client( |
|
's3', |
|
aws_access_key_id=AWS_ACCESS_KEY_ID, |
|
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, |
|
region_name=AWS_REGION |
|
) |
|
self.bucket_name = bucket_name |
|
|
|
def stream_from_s3(self, key): |
|
try: |
|
logger.info(f"Downloading {key} from S3...") |
|
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key) |
|
logger.info(f"Downloaded {key} from S3 successfully.") |
|
return response['Body'] |
|
except self.s3_client.exceptions.NoSuchKey: |
|
logger.error(f"File {key} not found in S3") |
|
raise HTTPException(status_code=404, detail=f"File {key} not found in S3") |
|
|
|
def file_exists_in_s3(self, key): |
|
try: |
|
self.s3_client.head_object(Bucket=self.bucket_name, Key=key) |
|
logger.info(f"File {key} exists in S3.") |
|
return True |
|
except self.s3_client.exceptions.ClientError: |
|
logger.info(f"File {key} does not exist in S3.") |
|
return False |
|
|
|
def load_model_from_stream(self, model_prefix): |
|
try: |
|
logger.info(f"Loading model {model_prefix}...") |
|
if self.file_exists_in_s3(f"{model_prefix}/config.json"): |
|
logger.info(f"Model {model_prefix} found in S3. Loading...") |
|
return self.load_model_from_existing_s3(model_prefix) |
|
|
|
logger.info(f"Model {model_prefix} not found in S3. Downloading and uploading...") |
|
self.download_and_upload_to_s3(model_prefix) |
|
logger.info(f"Downloaded and uploaded {model_prefix}. Loading from S3...") |
|
return self.load_model_from_stream(model_prefix) |
|
except HTTPException as e: |
|
logger.error(f"Error loading model: {e}") |
|
return None |
|
|
|
def load_model_from_existing_s3(self, model_prefix): |
|
logger.info(f"Loading config for {model_prefix} from S3...") |
|
config_stream = self.stream_from_s3(f"{model_prefix}/config.json") |
|
config_dict = json.load(config_stream) |
|
config = AutoConfig.from_pretrained(model_prefix, **config_dict) |
|
logger.info(f"Config loaded for {model_prefix}.") |
|
|
|
model_files = self._get_model_files(model_prefix) |
|
if not model_files: |
|
logger.error(f"No model files found for {model_prefix} in S3") |
|
raise EnvironmentError(f"No model files found for {model_prefix} in S3") |
|
|
|
state_dict = {} |
|
for model_file in model_files: |
|
model_path = os.path.join(model_prefix, model_file) |
|
logger.info(f"Loading model file: {model_path}") |
|
model_stream = self.stream_from_s3(model_path) |
|
try: |
|
if model_path.endswith(".safetensors"): |
|
shard_state = safetensors.torch.load_stream(model_stream) |
|
elif model_path.endswith(".bin"): |
|
shard_state = torch.load(model_stream, map_location="cpu") |
|
else: |
|
logger.error(f"Unsupported model file type: {model_path}") |
|
raise ValueError(f"Unsupported model file type: {model_path}") |
|
|
|
state_dict.update(shard_state) |
|
except Exception as e: |
|
logger.exception(f"Error loading model file {model_path}: {e}") |
|
raise |
|
|
|
model = AutoModelForCausalLM.from_config(config) |
|
model.load_state_dict(state_dict) |
|
return model |
|
|
|
def load_tokenizer_from_stream(self, model_prefix): |
|
try: |
|
logger.info(f"Loading tokenizer for {model_prefix}...") |
|
if self.file_exists_in_s3(f"{model_prefix}/tokenizer.json"): |
|
logger.info(f"Tokenizer for {model_prefix} found in S3. Loading...") |
|
return self.load_tokenizer_from_existing_s3(model_prefix, config) |
|
|
|
logger.info(f"Tokenizer for {model_prefix} not found in S3. Downloading and uploading...") |
|
self.download_and_upload_to_s3(model_prefix) |
|
logger.info(f"Downloaded and uploaded tokenizer for {model_prefix}. Loading from S3...") |
|
return self.load_tokenizer_from_stream(model_prefix) |
|
except HTTPException as e: |
|
logger.error(f"Error loading tokenizer: {e}") |
|
return None |
|
|
|
def load_tokenizer_from_existing_s3(self, model_prefix, config): |
|
logger.info(f"Loading tokenizer from S3 for {model_prefix}...") |
|
tokenizer_stream = self.stream_from_s3(f"{model_prefix}/tokenizer.json") |
|
tokenizer = AutoTokenizer.from_pretrained(None, config=config) |
|
logger.info(f"Tokenizer loaded for {model_prefix}.") |
|
return tokenizer |
|
|
|
def download_and_upload_to_s3(self, model_prefix): |
|
logger.info(f"Downloading and uploading model files for {model_prefix} to S3...") |
|
try: |
|
api = HfApi() |
|
model_files = api.list_repo_files(model_prefix) |
|
|
|
for file_info in model_files: |
|
if file_info.rfilename.endswith(('.bin', '.safetensors', 'config.json', 'tokenizer.json')): |
|
file_url = api.download_file(model_prefix, file_info.rfilename) |
|
s3_key = f"{model_prefix}/{file_info.rfilename}" |
|
try: |
|
self.download_and_upload_to_s3_url(file_url, s3_key) |
|
logger.info(f"Downloaded and uploaded {s3_key}") |
|
except Exception as e: |
|
logger.exception(f"Error downloading/uploading {s3_key}: {e}") |
|
|
|
logger.info(f"Finished downloading and uploading model files for {model_prefix}.") |
|
|
|
except requests.exceptions.RequestException as e: |
|
logger.error(f"Error downloading model files from HuggingFace: {e}") |
|
raise HTTPException(status_code=500, detail=f"Error downloading model files from Hugging Face") from e |
|
except Exception as e: |
|
logger.error(f"An unexpected error occurred: {e}") |
|
raise HTTPException(status_code=500, detail=f"An unexpected error occurred during model download") from e |
|
|
|
def download_and_upload_to_s3_url(self, url, s3_key): |
|
logger.info(f"Downloading from {url}...") |
|
with requests.get(url, stream=True) as response: |
|
if response.status_code == 200: |
|
total_size_in_bytes = int(response.headers.get('content-length', 0)) |
|
block_size = 1024 |
|
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True) |
|
logger.info(f"Uploading to S3: {s3_key}...") |
|
self.s3_client.upload_fileobj(response.raw, self.bucket_name, s3_key, Callback=lambda bytes_transferred: progress_bar.update(bytes_transferred)) |
|
progress_bar.close() |
|
logger.info(f"Uploaded {s3_key} to S3 successfully.") |
|
elif response.status_code == 404: |
|
logger.error(f"File not found at {url}") |
|
raise HTTPException(status_code=404, detail=f"Error downloading file from {url}. File not found.") |
|
else: |
|
logger.error(f"Error downloading from {url}: Status code {response.status_code}") |
|
raise HTTPException(status_code=500, detail=f"Error downloading file from {url}") |
|
|
|
def _get_latest_revision(self, model_prefix): |
|
try: |
|
api = HfApi() |
|
model_info = api.model_info(model_prefix) |
|
if hasattr(model_info, 'revision'): |
|
revision = model_info.revision |
|
if revision: |
|
return revision |
|
else: |
|
logger.warning(f"No revision found for {model_prefix}, using 'main'") |
|
return "main" |
|
else: |
|
logger.warning(f"ModelInfo object for {model_prefix} does not have a 'revision' attribute, using 'main'") |
|
return "main" |
|
except Exception as e: |
|
logger.error(f"Error getting latest revision for {model_prefix}: {e}") |
|
return None |
|
|
|
|
|
@app.post("/predict/") |
|
async def predict(model_request: DownloadModelRequest): |
|
try: |
|
logger.info(f"Received request: Model={model_request.model_id}, Task={model_request.pipeline_task}, Input={model_request.input_text}") |
|
model_id = model_request.model_id |
|
task = model_request.pipeline_task |
|
input_text = model_request.input_text |
|
|
|
streamer = S3DirectStream(S3_BUCKET_NAME) |
|
logger.info("Loading model and tokenizer...") |
|
model = streamer.load_model_from_stream(model_id) |
|
|
|
if model is None: |
|
logger.error(f"Failed to load model {model_id}") |
|
raise HTTPException(status_code=500, detail=f"Failed to load model {model_id}") |
|
|
|
tokenizer = streamer.load_tokenizer_from_stream(model_id) |
|
logger.info("Model and tokenizer loaded.") |
|
|
|
if task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering", "summarization", "zero-shot-classification"]: |
|
raise HTTPException(status_code=400, detail="Unsupported pipeline task") |
|
|
|
if task == "text-generation": |
|
logger.info("Starting text generation...") |
|
text_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
inputs = tokenizer(input_text, return_tensors="pt").to(model.device) |
|
generation_kwargs = dict(inputs, streamer=text_streamer) |
|
model.generate(**generation_kwargs) |
|
logger.info("Text generation finished.") |
|
return StreamingResponse(iter([tokenizer.decode(token) for token in text_streamer]), media_type="text/event-stream") |
|
else: |
|
logger.info(f"Starting pipeline task: {task}...") |
|
nlp_pipeline = pipeline(task, model=model, tokenizer=tokenizer, device_map="auto", trust_remote_code=True) |
|
outputs = nlp_pipeline(input_text) |
|
logger.info(f"Pipeline task {task} finished.") |
|
return {"result": outputs} |
|
|
|
except Exception as e: |
|
logger.exception(f"Error processing request: {e}") |
|
raise HTTPException(status_code=500, detail=f"Error processing request: {str(e)}") |
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |