|
import os |
|
import json |
|
import logging |
|
import boto3 |
|
from fastapi import FastAPI, HTTPException, Query |
|
from fastapi.responses import JSONResponse |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from huggingface_hub import hf_hub_download |
|
import asyncio |
|
|
|
logger = logging.getLogger(__name__) |
|
logger.setLevel(logging.INFO) |
|
console_handler = logging.StreamHandler() |
|
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') |
|
console_handler.setFormatter(formatter) |
|
logger.addHandler(console_handler) |
|
|
|
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") |
|
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") |
|
AWS_REGION = os.getenv("AWS_REGION") |
|
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") |
|
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") |
|
|
|
MAX_TOKENS = 1024 |
|
|
|
s3_client = boto3.client( |
|
's3', |
|
aws_access_key_id=AWS_ACCESS_KEY_ID, |
|
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, |
|
region_name=AWS_REGION |
|
) |
|
|
|
app = FastAPI() |
|
|
|
class S3DirectStream: |
|
def __init__(self, bucket_name): |
|
self.s3_client = boto3.client( |
|
's3', |
|
aws_access_key_id=AWS_ACCESS_KEY_ID, |
|
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, |
|
region_name=AWS_REGION |
|
) |
|
self.bucket_name = bucket_name |
|
|
|
async def stream_from_s3(self, key): |
|
loop = asyncio.get_event_loop() |
|
return await loop.run_in_executor(None, self._stream_from_s3, key) |
|
|
|
def _stream_from_s3(self, key): |
|
try: |
|
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key) |
|
return response['Body'] |
|
except self.s3_client.exceptions.NoSuchKey: |
|
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.") |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}") |
|
|
|
async def get_model_file_parts(self, model_name): |
|
loop = asyncio.get_event_loop() |
|
return await loop.run_in_executor(None, self._get_model_file_parts, model_name) |
|
|
|
def _get_model_file_parts(self, model_name): |
|
try: |
|
model_name = model_name.replace("/", "-").lower() |
|
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_name) |
|
model_files = [obj['Key'] for obj in files.get('Contents', []) if model_name in obj['Key']] |
|
return model_files |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}") |
|
|
|
async def load_model_from_s3(self, model_name): |
|
try: |
|
model_name = model_name.replace("/", "-").lower() |
|
model_files = await self.get_model_file_parts(model_name) |
|
|
|
if not model_files: |
|
await self.download_and_upload_to_s3(model_name) |
|
|
|
config_stream = await self.stream_from_s3(f"{model_name}/config.json") |
|
config_data = config_stream.read() |
|
|
|
if not config_data: |
|
raise HTTPException(status_code=500, detail=f"El archivo de configuración {model_name}/config.json está vacío o no se pudo leer.") |
|
|
|
config_text = config_data.decode("utf-8") |
|
config_json = json.loads(config_text) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_name}", config=config_json, from_tf=False) |
|
return model |
|
|
|
except HTTPException as e: |
|
raise e |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {e}") |
|
|
|
async def load_tokenizer_from_s3(self, model_name): |
|
try: |
|
model_name = model_name.replace("/", "-").lower() |
|
tokenizer_stream = await self.stream_from_s3(f"{model_name}/tokenizer.json") |
|
tokenizer_data = tokenizer_stream.read().decode("utf-8") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}") |
|
return tokenizer |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}") |
|
|
|
async def create_s3_folders(self, s3_key): |
|
try: |
|
folder_keys = s3_key.split('-') |
|
for i in range(1, len(folder_keys)): |
|
folder_key = '-'.join(folder_keys[:i]) + '/' |
|
if not await self.file_exists_in_s3(folder_key): |
|
logger.info(f"Creando carpeta en S3: {folder_key}") |
|
self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='') |
|
|
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error al crear carpetas en S3: {e}") |
|
|
|
async def file_exists_in_s3(self, s3_key): |
|
try: |
|
self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key) |
|
return True |
|
except self.s3_client.exceptions.ClientError: |
|
return False |
|
|
|
async def download_and_upload_to_s3(self, model_name, force_download=False): |
|
try: |
|
if force_download: |
|
logger.info(f"Forzando la descarga del modelo {model_name} y la carga a S3.") |
|
|
|
model_name = model_name.replace("/", "-").lower() |
|
|
|
if not await self.file_exists_in_s3(f"{model_name}/config.json") or not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"): |
|
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN, force_download=force_download) |
|
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN, force_download=force_download) |
|
|
|
await self.create_s3_folders(f"{model_name}/") |
|
|
|
if not await self.file_exists_in_s3(f"{model_name}/config.json"): |
|
with open(config_file, "rb") as file: |
|
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file) |
|
|
|
if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"): |
|
with open(tokenizer_file, "rb") as file: |
|
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file) |
|
else: |
|
logger.info(f"Los archivos del modelo {model_name} ya existen en S3. No es necesario descargarlos de nuevo.") |
|
|
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error al descargar o cargar archivos desde Hugging Face a S3: {e}") |
|
|
|
async def resume_download(self, model_name): |
|
try: |
|
logger.info(f"Reanudando la descarga del modelo {model_name} desde Hugging Face.") |
|
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN, resume_download=True) |
|
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN, resume_download=True) |
|
|
|
if not await self.file_exists_in_s3(f"{model_name}/config.json"): |
|
with open(config_file, "rb") as file: |
|
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file) |
|
|
|
if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"): |
|
with open(tokenizer_file, "rb") as file: |
|
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file) |
|
|
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error al reanudar la descarga o cargar archivos desde Hugging Face a S3: {e}") |
|
|
|
def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS): |
|
tokens = tokenizer.encode(text) |
|
chunks = [] |
|
for i in range(0, len(tokens), max_tokens): |
|
chunk = tokens[i:i+max_tokens] |
|
chunks.append(tokenizer.decode(chunk)) |
|
return chunks |
|
|
|
def continue_generation(input_text, model, tokenizer, max_tokens=MAX_TOKENS): |
|
generated_text = "" |
|
while len(input_text) > 0: |
|
chunks = split_text_by_tokens(input_text, tokenizer, max_tokens) |
|
for chunk in chunks: |
|
generated_text += model.generate(chunk) |
|
return generated_text |
|
|
|
@app.post("/generate") |
|
async def generate_text(model_name: str = Query(...), input_text: str = Query(...)): |
|
try: |
|
model_loader = S3DirectStream(S3_BUCKET_NAME) |
|
model = await model_loader.load_model_from_s3(model_name) |
|
tokenizer = await model_loader.load_tokenizer_from_s3(model_name) |
|
|
|
chunks = split_text_by_tokens(input_text, tokenizer, max_tokens=MAX_TOKENS) |
|
|
|
generated_text = continue_generation(input_text, model, tokenizer) |
|
|
|
return {"generated_text": generated_text} |
|
|
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |
|
|