|
import os |
|
import json |
|
import logging |
|
import boto3 |
|
from fastapi import FastAPI, HTTPException |
|
from fastapi.responses import JSONResponse |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
import asyncio |
|
import concurrent.futures |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") |
|
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") |
|
AWS_REGION = os.getenv("AWS_REGION") |
|
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") |
|
|
|
MAX_TOKENS = 1024 |
|
|
|
s3_client = boto3.client( |
|
's3', |
|
aws_access_key_id=AWS_ACCESS_KEY_ID, |
|
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, |
|
region_name=AWS_REGION |
|
) |
|
|
|
app = FastAPI() |
|
|
|
PIPELINE_MAP = { |
|
"text-generation": "text-generation", |
|
"sentiment-analysis": "sentiment-analysis", |
|
"translation": "translation", |
|
"fill-mask": "fill-mask", |
|
"question-answering": "question-answering", |
|
"text-to-speech": "text-to-speech", |
|
"text-to-video": "text-to-video", |
|
"text-to-image": "text-to-image" |
|
} |
|
|
|
class S3DirectStream: |
|
def __init__(self, bucket_name): |
|
self.s3_client = boto3.client( |
|
's3', |
|
aws_access_key_id=AWS_ACCESS_KEY_ID, |
|
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, |
|
region_name=AWS_REGION |
|
) |
|
self.bucket_name = bucket_name |
|
|
|
async def stream_from_s3(self, key): |
|
loop = asyncio.get_event_loop() |
|
return await loop.run_in_executor(None, self._stream_from_s3, key) |
|
|
|
def _stream_from_s3(self, key): |
|
try: |
|
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key) |
|
return response['Body'] |
|
except self.s3_client.exceptions.NoSuchKey: |
|
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.") |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}") |
|
|
|
async def get_model_file_parts(self, model_name): |
|
loop = asyncio.get_event_loop() |
|
return await loop.run_in_executor(None, self._get_model_file_parts, model_name) |
|
|
|
def _get_model_file_parts(self, model_name): |
|
try: |
|
model_prefix = model_name.lower() |
|
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_prefix) |
|
model_files = [obj['Key'] for obj in files.get('Contents', []) if model_prefix in obj['Key']] |
|
return model_files |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}") |
|
|
|
async def load_model_from_s3(self, model_name): |
|
try: |
|
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name) |
|
|
|
model_prefix = f"{profile}/{model}".lower() |
|
model_files = await self.get_model_file_parts(model_prefix) |
|
|
|
if not model_files: |
|
raise HTTPException(status_code=404, detail=f"Archivos del modelo {model_name} no encontrados en S3.") |
|
|
|
config_stream = await self.stream_from_s3(f"{model_prefix}/config.json") |
|
config_data = config_stream.read() |
|
|
|
if not config_data: |
|
raise HTTPException(status_code=500, detail=f"El archivo de configuraci贸n {model_prefix}/config.json est谩 vac铆o.") |
|
|
|
config_text = config_data.decode("utf-8") |
|
config_json = json.loads(config_text) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_prefix}", config=config_json, from_tf=False) |
|
return model |
|
|
|
except HTTPException as e: |
|
raise e |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {e}") |
|
|
|
async def load_tokenizer_from_s3(self, model_name): |
|
try: |
|
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name) |
|
|
|
tokenizer_stream = await self.stream_from_s3(f"{profile}/{model}/tokenizer.json") |
|
tokenizer_data = tokenizer_stream.read().decode("utf-8") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(f"{profile}/{model}") |
|
return tokenizer |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}") |
|
|
|
async def create_s3_folders(self, s3_key): |
|
try: |
|
folder_keys = s3_key.split('/') |
|
for i in range(1, len(folder_keys)): |
|
folder_key = '/'.join(folder_keys[:i]) + '/' |
|
if not await self.file_exists_in_s3(folder_key): |
|
self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='') |
|
|
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error al crear carpetas en S3: {e}") |
|
|
|
async def file_exists_in_s3(self, s3_key): |
|
try: |
|
self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key) |
|
return True |
|
except self.s3_client.exceptions.ClientError: |
|
return False |
|
|
|
def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS): |
|
tokens = tokenizer.encode(text) |
|
chunks = [] |
|
for i in range(0, len(tokens), max_tokens): |
|
chunk = tokens[i:i+max_tokens] |
|
chunks.append(tokenizer.decode(chunk)) |
|
return chunks |
|
|
|
def continue_generation(input_text, model, tokenizer, max_tokens=MAX_TOKENS): |
|
generated_text = "" |
|
while len(input_text) > 0: |
|
tokens = tokenizer.encode(input_text) |
|
input_text = tokenizer.decode(tokens[:max_tokens]) |
|
output = model.generate(input_ids=tokenizer.encode(input_text, return_tensors="pt").input_ids) |
|
generated_text += tokenizer.decode(output[0], skip_special_tokens=True) |
|
input_text = input_text[len(input_text):] |
|
return generated_text |
|
|
|
@app.post("/predict/") |
|
async def predict(model_request: dict): |
|
try: |
|
model_name = model_request.get("model_name") |
|
task = model_request.get("pipeline_task") |
|
input_text = model_request.get("input_text") |
|
|
|
if not model_name or not task or not input_text: |
|
raise HTTPException(status_code=400, detail="Faltan par谩metros en la solicitud.") |
|
|
|
streamer = S3DirectStream(S3_BUCKET_NAME) |
|
model = await streamer.load_model_from_s3(model_name) |
|
tokenizer = await streamer.load_tokenizer_from_s3(model_name) |
|
|
|
if task not in PIPELINE_MAP: |
|
raise HTTPException(status_code=400, detail="Pipeline task no soportado") |
|
|
|
nlp_pipeline = pipeline(PIPELINE_MAP[task], model=model, tokenizer=tokenizer) |
|
|
|
result = await asyncio.to_thread(nlp_pipeline, input_text) |
|
|
|
chunks = split_text_by_tokens(result, tokenizer) |
|
|
|
if len(chunks) > 1: |
|
full_result = "" |
|
for chunk in chunks: |
|
full_result += continue_generation(chunk, model, tokenizer) |
|
return JSONResponse(content={"result": full_result}) |
|
else: |
|
return JSONResponse(content={"result": result}) |
|
|
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error al realizar la predicci贸n: {e}") |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|