|
import os |
|
import torch |
|
from fastapi import FastAPI, HTTPException |
|
from fastapi.responses import StreamingResponse |
|
from pydantic import BaseModel |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
GenerationConfig, |
|
StoppingCriteriaList, |
|
pipeline |
|
) |
|
from io import BytesIO |
|
import boto3 |
|
from botocore.exceptions import NoCredentialsError |
|
from huggingface_hub import snapshot_download |
|
import shutil |
|
|
|
|
|
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") |
|
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") |
|
AWS_REGION = os.getenv("AWS_REGION") |
|
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") |
|
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") |
|
|
|
|
|
token_dict = {} |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
class GenerateRequest(BaseModel): |
|
model_name: str |
|
input_text: str |
|
task_type: str |
|
temperature: float = 1.0 |
|
max_new_tokens: int = 200 |
|
stream: bool = True |
|
top_p: float = 1.0 |
|
top_k: int = 50 |
|
repetition_penalty: float = 1.0 |
|
num_return_sequences: int = 1 |
|
do_sample: bool = True |
|
chunk_delay: float = 0.0 |
|
stop_sequences: list[str] = [] |
|
|
|
|
|
class S3ModelLoader: |
|
def __init__(self, bucket_name, aws_access_key_id=None, aws_secret_access_key=None, aws_region=None): |
|
self.bucket_name = bucket_name |
|
self.s3_client = boto3.client( |
|
's3', |
|
aws_access_key_id=aws_access_key_id, |
|
aws_secret_access_key=aws_secret_access_key, |
|
region_name=aws_region |
|
) |
|
|
|
def _get_s3_uri(self, model_name): |
|
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}" |
|
|
|
def load_model_and_tokenizer(self, model_name): |
|
if model_name in token_dict: |
|
return token_dict[model_name] |
|
|
|
s3_uri = self._get_s3_uri(model_name) |
|
try: |
|
|
|
try: |
|
self.s3_client.head_object(Bucket=self.bucket_name, Key=f'{model_name}/model') |
|
print(f"Modelo {model_name} ya existe en S3.") |
|
except self.s3_client.exceptions.ClientError: |
|
print(f"Modelo {model_name} no existe en S3. Descargando desde Hugging Face...") |
|
|
|
|
|
local_cache_dir = os.path.join(os.getenv("HOME"), ".cache/huggingface/hub/models--") |
|
if os.path.exists(local_cache_dir): |
|
shutil.rmtree(local_cache_dir) |
|
|
|
model_path = snapshot_download(model_name, token=HUGGINGFACE_HUB_TOKEN) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
|
|
|
|
if tokenizer.eos_token_id is None: |
|
tokenizer.eos_token_id = tokenizer.pad_token_id |
|
|
|
|
|
token_dict[model_name] = { |
|
"model": model, |
|
"tokenizer": tokenizer, |
|
"pad_token_id": tokenizer.pad_token_id, |
|
"eos_token_id": tokenizer.eos_token_id |
|
} |
|
|
|
|
|
self.s3_client.upload_file(model_path, self.bucket_name, f'{model_name}/model') |
|
self.s3_client.upload_file(f'{model_path}/tokenizer', self.bucket_name, f'{model_name}/tokenizer') |
|
|
|
|
|
shutil.rmtree(model_path) |
|
|
|
return token_dict[model_name] |
|
except NoCredentialsError: |
|
raise HTTPException(status_code=500, detail="AWS credentials not found.") |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error loading model: {e}") |
|
|
|
|
|
model_loader = S3ModelLoader(S3_BUCKET_NAME, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION) |
|
|
|
|
|
async def stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay, max_length=2048): |
|
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device) |
|
input_length = encoded_input["input_ids"].shape[1] |
|
remaining_tokens = max_length - input_length |
|
|
|
if remaining_tokens <= 0: |
|
yield "" |
|
|
|
generation_config.max_new_tokens = min(remaining_tokens, generation_config.max_new_tokens) |
|
|
|
def stop_criteria(input_ids, scores): |
|
decoded_output = tokenizer.decode(int(input_ids[0][-1]), skip_special_tokens=True) |
|
return decoded_output in stop_sequences |
|
|
|
stopping_criteria = StoppingCriteriaList([stop_criteria]) |
|
|
|
output_text = "" |
|
outputs = model.generate( |
|
**encoded_input, |
|
do_sample=generation_config.do_sample, |
|
max_new_tokens=generation_config.max_new_tokens, |
|
temperature=generation_config.temperature, |
|
top_p=generation_config.top_p, |
|
top_k=generation_config.top_k, |
|
repetition_penalty=generation_config.repetition_penalty, |
|
num_return_sequences=generation_config.num_return_sequences, |
|
stopping_criteria=stopping_criteria, |
|
output_scores=True, |
|
return_dict_in_generate=True |
|
) |
|
|
|
for output in outputs.sequences: |
|
for token_id in output: |
|
token = tokenizer.decode(token_id, skip_special_tokens=True) |
|
yield token |
|
await asyncio.sleep(chunk_delay) |
|
|
|
if stop_sequences and any(stop in output_text for stop in stop_sequences): |
|
yield output_text |
|
return |
|
|
|
|
|
@app.post("/generate") |
|
async def generate(request: GenerateRequest): |
|
try: |
|
model_name = request.model_name |
|
input_text = request.input_text |
|
temperature = request.temperature |
|
max_new_tokens = request.max_new_tokens |
|
stream = request.stream |
|
top_p = request.top_p |
|
top_k = request.top_k |
|
repetition_penalty = request.repetition_penalty |
|
num_return_sequences = request.num_return_sequences |
|
do_sample = request.do_sample |
|
chunk_delay = request.chunk_delay |
|
stop_sequences = request.stop_sequences |
|
|
|
|
|
model_data = model_loader.load_model_and_tokenizer(model_name) |
|
model = model_data["model"] |
|
tokenizer = model_data["tokenizer"] |
|
pad_token_id = model_data["pad_token_id"] |
|
eos_token_id = model_data["eos_token_id"] |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
|
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
top_k=top_k, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=do_sample, |
|
num_return_sequences=num_return_sequences, |
|
) |
|
|
|
return StreamingResponse( |
|
stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay), |
|
media_type="text/plain" |
|
) |
|
|
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") |
|
|
|
|
|
@app.post("/generate-image") |
|
async def generate_image(request: GenerateRequest): |
|
try: |
|
validated_body = request |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
image_generator = pipeline("text-to-image", model=validated_body.model_name, device=device) |
|
image = image_generator(validated_body.input_text)[0] |
|
|
|
img_byte_arr = BytesIO() |
|
image.save(img_byte_arr, format="PNG") |
|
img_byte_arr.seek(0) |
|
|
|
return StreamingResponse(img_byte_arr, media_type="image/png") |
|
|
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") |
|
|
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|