|
from huggingface_hub import HfApi |
|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
import requests |
|
import boto3 |
|
from dotenv import load_dotenv |
|
import os |
|
import uvicorn |
|
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoConfig, TextIteratorStreamer |
|
import safetensors.torch |
|
import torch |
|
from fastapi.responses import StreamingResponse |
|
|
|
load_dotenv() |
|
|
|
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") |
|
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") |
|
AWS_REGION = os.getenv("AWS_REGION") |
|
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") |
|
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") |
|
|
|
s3_client = boto3.client( |
|
's3', |
|
aws_access_key_id=AWS_ACCESS_KEY_ID, |
|
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, |
|
region_name=AWS_REGION |
|
) |
|
|
|
app = FastAPI() |
|
|
|
class DownloadModelRequest(BaseModel): |
|
model_name: str |
|
pipeline_task: str |
|
input_text: str |
|
revision: str = "main" |
|
|
|
class S3DirectStream: |
|
def __init__(self, bucket_name): |
|
self.s3_client = boto3.client( |
|
's3', |
|
aws_access_key_id=AWS_ACCESS_KEY_ID, |
|
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, |
|
region_name=AWS_REGION |
|
) |
|
self.bucket_name = bucket_name |
|
|
|
def stream_from_s3(self, key): |
|
try: |
|
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key) |
|
return response['Body'] |
|
except self.s3_client.exceptions.NoSuchKey: |
|
raise HTTPException(status_code=404, detail=f"File {key} not found in S3") |
|
|
|
def file_exists_in_s3(self, key): |
|
try: |
|
self.s3_client.head_object(Bucket=self.bucket_name, Key=key) |
|
return True |
|
except self.s3_client.exceptions.ClientError: |
|
return False |
|
|
|
def load_model_from_stream(self, model_prefix, revision): |
|
try: |
|
if self.file_exists_in_s3(f"{model_prefix}/config.json") and \ |
|
(self.file_exists_in_s3(f"{model_prefix}/pytorch_model.bin") or self.file_exists_in_s3(f"{model_prefix}/model.safetensors")): |
|
return self.load_model_from_existing_s3(model_prefix) |
|
|
|
self.download_and_upload_to_s3(model_prefix, revision) |
|
return self.load_model_from_stream(model_prefix, revision) |
|
except HTTPException as e: |
|
return None |
|
|
|
def load_model_from_existing_s3(self, model_prefix): |
|
config_stream = self.stream_from_s3(f"{model_prefix}/config.json") |
|
config = AutoConfig.from_pretrained(config_stream) |
|
|
|
if self.file_exists_in_s3(f"{model_prefix}/model.safetensors"): |
|
model_stream = self.stream_from_s3(f"{model_prefix}/model.safetensors") |
|
model = AutoModelForCausalLM.from_config(config) |
|
model.load_state_dict(safetensors.torch.load_stream(model_stream)) |
|
elif self.file_exists_in_s3(f"{model_prefix}/pytorch_model.bin"): |
|
model_stream = self.stream_from_s3(f"{model_prefix}/pytorch_model.bin") |
|
model = AutoModelForCausalLM.from_config(config) |
|
state_dict = torch.load(model_stream, map_location="cpu") |
|
model.load_state_dict(state_dict) |
|
else: |
|
raise EnvironmentError(f"No model file found for {model_prefix} in S3") |
|
return model |
|
|
|
|
|
|
|
def load_tokenizer_from_stream(self, model_prefix): |
|
try: |
|
if self.file_exists_in_s3(f"{model_prefix}/tokenizer.json"): |
|
return self.load_tokenizer_from_existing_s3(model_prefix) |
|
self.download_and_upload_to_s3(model_prefix) |
|
return self.load_tokenizer_from_stream(model_prefix) |
|
except HTTPException as e: |
|
return None |
|
|
|
def load_tokenizer_from_existing_s3(self, model_prefix): |
|
tokenizer_stream = self.stream_from_s3(f"{model_prefix}/tokenizer.json") |
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_stream) |
|
return tokenizer |
|
|
|
|
|
def download_and_upload_to_s3(self, model_prefix, revision="main"): |
|
model_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/pytorch_model.bin" |
|
safetensors_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/model.safetensors" |
|
tokenizer_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/tokenizer.json" |
|
config_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/config.json" |
|
|
|
self.download_and_upload_to_s3_url(model_url, f"{model_prefix}/pytorch_model.bin") |
|
self.download_and_upload_to_s3_url(safetensors_url, f"{model_prefix}/model.safetensors") |
|
self.download_and_upload_to_s3_url(tokenizer_url, f"{model_prefix}/tokenizer.json") |
|
self.download_and_upload_to_s3_url(config_url, f"{model_prefix}/config.json") |
|
|
|
|
|
def download_and_upload_to_s3_url(self, url, s3_key): |
|
response = requests.get(url, stream=True) |
|
if response.status_code == 200: |
|
self.s3_client.upload_fileobj(response.raw, self.bucket_name, s3_key) |
|
elif response.status_code == 404: |
|
raise HTTPException(status_code=404, detail=f"Error downloading file from {url}. File not found.") |
|
|
|
else: |
|
raise HTTPException(status_code=500, detail=f"Error downloading file from {url}") |
|
|
|
|
|
|
|
@app.post("/predict/") |
|
async def predict(model_request: DownloadModelRequest): |
|
try: |
|
model_name = model_request.model_name |
|
revision = model_request.revision |
|
|
|
streamer = S3DirectStream(S3_BUCKET_NAME) |
|
model = streamer.load_model_from_stream(model_name, revision) |
|
tokenizer = streamer.load_tokenizer_from_stream(model_name) |
|
|
|
task = model_request.pipeline_task |
|
if task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering", "summarization", "zero-shot-classification"]: |
|
raise HTTPException(status_code=400, detail="Unsupported pipeline task") |
|
|
|
if task == "text-generation": |
|
text_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
inputs = tokenizer(model_request.input_text, return_tensors="pt").to(model.device) |
|
generation_kwargs = dict(inputs, streamer=text_streamer) |
|
model.generate(**generation_kwargs) |
|
return StreamingResponse(iter([tokenizer.decode(token) for token in text_streamer]), media_type="text/event-stream") |
|
|
|
else: |
|
nlp_pipeline = pipeline(task, model=model, tokenizer=tokenizer, device_map="auto", trust_remote_code=True) |
|
outputs = nlp_pipeline(model_request.input_text) |
|
return {"result": outputs} |
|
|
|
|
|
except Exception as e: |
|
print(f"Complete Error: {e}") |
|
raise HTTPException(status_code=500, detail=f"Error processing request: {str(e)}") |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |