|
import os |
|
import boto3 |
|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel, Field |
|
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer |
|
import safetensors.torch |
|
from fastapi.responses import StreamingResponse |
|
from dotenv import load_dotenv |
|
import requests |
|
import torch |
|
import uvicorn |
|
import re |
|
from tqdm import tqdm |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") |
|
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") |
|
AWS_REGION = os.getenv("AWS_REGION") |
|
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") |
|
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") |
|
|
|
|
|
s3_client = boto3.client( |
|
's3', |
|
aws_access_key_id=AWS_ACCESS_KEY_ID, |
|
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, |
|
region_name=AWS_REGION |
|
) |
|
|
|
app = FastAPI() |
|
|
|
|
|
class DownloadModelRequest(BaseModel): |
|
model_name: str = Field(..., example="model_directory_name") |
|
pipeline_task: str = Field(..., example="text-generation") |
|
input_text: str = Field(..., example="Introduce your input text here.") |
|
|
|
|
|
class S3DirectStream: |
|
def __init__(self, bucket_name): |
|
self.s3_client = boto3.client( |
|
's3', |
|
aws_access_key_id=AWS_ACCESS_KEY_ID, |
|
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, |
|
region_name=AWS_REGION |
|
) |
|
self.bucket_name = bucket_name |
|
|
|
def stream_from_s3(self, key): |
|
try: |
|
print(f"[INFO] Descargando archivo {key} desde S3...") |
|
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key) |
|
return response['Body'] |
|
except self.s3_client.exceptions.NoSuchKey: |
|
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.") |
|
except Exception as e: |
|
print(f"[ERROR] Error al descargar {key}: {str(e)}") |
|
raise HTTPException(status_code=500, detail="Error al descargar archivo desde S3.") |
|
|
|
def load_model_and_tokenizer(self, model_prefix): |
|
try: |
|
print(f"[INFO] Cargando modelo y tokenizer desde S3 para {model_prefix}...") |
|
model_stream = self.stream_from_s3(f"{model_prefix}/model.safetensors") |
|
config_stream = self.stream_from_s3(f"{model_prefix}/config.json") |
|
tokenizer_stream = self.stream_from_s3(f"{model_prefix}/tokenizer.json") |
|
|
|
|
|
config_data = config_stream.read().decode("utf-8") |
|
|
|
|
|
model = AutoModelForCausalLM.from_config(config_data) |
|
model.load_state_dict(safetensors.torch.load_stream(model_stream)) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_stream) |
|
|
|
print("[INFO] Modelo y tokenizer cargados con 茅xito.") |
|
return model, tokenizer |
|
except Exception as e: |
|
print(f"[ERROR] Error al cargar modelo/tokenizer desde S3: {e}") |
|
raise HTTPException(status_code=500, detail="Error al cargar modelo/tokenizer.") |
|
|
|
|
|
@app.post("/predict/") |
|
async def predict(model_request: DownloadModelRequest): |
|
try: |
|
print(f"[INFO] Procesando solicitud para el modelo {model_request.model_name}...") |
|
streamer = S3DirectStream(S3_BUCKET_NAME) |
|
model, tokenizer = streamer.load_model_and_tokenizer(model_request.model_name) |
|
|
|
if model_request.pipeline_task not in [ |
|
"text-generation", "sentiment-analysis", "translation", |
|
"fill-mask", "question-answering", "text-to-speech", |
|
"text-to-image", "text-to-video" |
|
]: |
|
raise HTTPException(status_code=400, detail="Pipeline task no soportado.") |
|
|
|
nlp_pipeline = pipeline(model_request.pipeline_task, model=model, tokenizer=tokenizer, max_length=2046) |
|
|
|
outputs = nlp_pipeline(model_request.input_text) |
|
|
|
|
|
if model_request.pipeline_task in ["text-to-speech", "text-to-image", "text-to-video"]: |
|
media_type_map = { |
|
"text-to-speech": "audio/wav", |
|
"text-to-image": "image/png", |
|
"text-to-video": "video/mp4" |
|
} |
|
s3_key = f"{model_request.model_name}/generated_output" |
|
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type=media_type_map[model_request.pipeline_task]) |
|
|
|
return {"input_text": model_request.input_text, "output": outputs} |
|
|
|
except Exception as e: |
|
print(f"[ERROR] Error al procesar la solicitud: {e}") |
|
raise HTTPException(status_code=500, detail=f"Error interno: {e}") |
|
|
|
|
|
if __name__ == "__main__": |
|
print("[INFO] Iniciando el servidor FastAPI...") |
|
uvicorn.run(app, host="0.0.0.0", port=9000) |
|
|