|
import os |
|
import logging |
|
import boto3 |
|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
from huggingface_hub import hf_hub_download |
|
import asyncio |
|
|
|
|
|
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") |
|
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") |
|
AWS_REGION = os.getenv("AWS_REGION") |
|
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") |
|
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") |
|
|
|
MAX_TOKENS = 1024 |
|
|
|
|
|
s3_client = boto3.client( |
|
's3', |
|
aws_access_key_id=AWS_ACCESS_KEY_ID, |
|
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, |
|
region_name=AWS_REGION |
|
) |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
class GenerateRequest(BaseModel): |
|
model_name: str |
|
input_text: str |
|
task_type: str |
|
|
|
|
|
class S3Manager: |
|
def __init__(self, bucket_name): |
|
self.bucket_name = bucket_name |
|
self.s3_client = s3_client |
|
|
|
async def get_file(self, key: str): |
|
"""Descarga un archivo desde S3.""" |
|
loop = asyncio.get_event_loop() |
|
return await loop.run_in_executor(None, self._get_file_sync, key) |
|
|
|
def _get_file_sync(self, key: str): |
|
try: |
|
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key) |
|
return response['Body'].read() |
|
except self.s3_client.exceptions.NoSuchKey: |
|
raise HTTPException(status_code=404, detail=f"Archivo {key} no encontrado en S3.") |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error al obtener el archivo {key} de S3: {str(e)}") |
|
|
|
async def upload_file(self, file_path: str, key: str): |
|
"""Sube un archivo a S3.""" |
|
loop = asyncio.get_event_loop() |
|
return await loop.run_in_executor(None, self._upload_file_sync, file_path, key) |
|
|
|
def _upload_file_sync(self, file_path: str, key: str): |
|
try: |
|
with open(file_path, "rb") as file: |
|
self.s3_client.put_object(Bucket=self.bucket_name, Key=key, Body=file) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error al subir {key} a S3: {str(e)}") |
|
|
|
async def file_exists(self, key: str): |
|
"""Verifica si un archivo existe en S3.""" |
|
loop = asyncio.get_event_loop() |
|
return await loop.run_in_executor(None, self._file_exists_sync, key) |
|
|
|
def _file_exists_sync(self, key: str): |
|
try: |
|
self.s3_client.head_object(Bucket=self.bucket_name, Key=key) |
|
return True |
|
except self.s3_client.exceptions.ClientError: |
|
return False |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error al verificar existencia de {key}: {str(e)}") |
|
|
|
async def download_model_files(self, model_name: str): |
|
"""Descarga los archivos del modelo desde Hugging Face y los sube a S3 si no est谩n presentes.""" |
|
model_name_s3 = model_name.replace("/", "-").lower() |
|
files = ["pytorch_model.bin", "tokenizer.json", "config.json"] |
|
|
|
for file in files: |
|
if not await self.file_exists(f"{model_name_s3}/{file}"): |
|
local_file = hf_hub_download(repo_id=model_name, filename=file, token=HUGGINGFACE_HUB_TOKEN) |
|
await self.upload_file(local_file, f"{model_name_s3}/{file}") |
|
|
|
async def load_model_from_s3(self, model_name: str): |
|
"""Carga el modelo desde S3.""" |
|
model_name_s3 = model_name.replace("/", "-").lower() |
|
files = { |
|
"model": f"{model_name_s3}/pytorch_model.bin", |
|
"tokenizer": f"{model_name_s3}/tokenizer.json", |
|
"config": f"{model_name_s3}/config.json", |
|
} |
|
|
|
for key, path in files.items(): |
|
if not await self.file_exists(path): |
|
raise HTTPException(status_code=404, detail=f"Archivo {path} no encontrado en S3.") |
|
|
|
model_bytes = await self.get_file(files["model"]) |
|
tokenizer_bytes = await self.get_file(files["tokenizer"]) |
|
config_bytes = await self.get_file(files["config"]) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_bytes, config=config_bytes) |
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_bytes) |
|
|
|
return model, tokenizer |
|
|
|
@app.post("/generate") |
|
async def generate(request: GenerateRequest): |
|
try: |
|
|
|
if not request.model_name or not request.input_text or not request.task_type: |
|
raise HTTPException(status_code=400, detail="Todos los campos son obligatorios.") |
|
|
|
if request.task_type not in ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]: |
|
raise HTTPException(status_code=400, detail="Tipo de tarea no soportado.") |
|
|
|
|
|
s3_manager = S3Manager(S3_BUCKET_NAME) |
|
await s3_manager.download_model_files(request.model_name) |
|
model, tokenizer = await s3_manager.load_model_from_s3(request.model_name) |
|
|
|
|
|
if request.task_type == "text-to-text": |
|
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
result = generator(request.input_text, max_length=MAX_TOKENS, num_return_sequences=1) |
|
return {"result": result[0]["generated_text"]} |
|
|
|
elif request.task_type == "text-to-image": |
|
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer) |
|
image = generator(request.input_text) |
|
return {"image": image} |
|
|
|
elif request.task_type == "text-to-speech": |
|
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer) |
|
audio = generator(request.input_text) |
|
return {"audio": audio} |
|
|
|
elif request.task_type == "text-to-video": |
|
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer) |
|
video = generator(request.input_text) |
|
return {"video": video} |
|
|
|
except HTTPException as e: |
|
raise e |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error en la generaci贸n: {str(e)}") |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|
|
|