Update app.py
Browse files
app.py
CHANGED
|
@@ -3,12 +3,11 @@ import json
|
|
| 3 |
import logging
|
| 4 |
import boto3
|
| 5 |
from fastapi import FastAPI, HTTPException
|
| 6 |
-
from
|
| 7 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
import asyncio
|
| 10 |
|
| 11 |
-
# Configuraci贸n del logger
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
logger.setLevel(logging.INFO)
|
| 14 |
console_handler = logging.StreamHandler()
|
|
@@ -33,17 +32,6 @@ s3_client = boto3.client(
|
|
| 33 |
|
| 34 |
app = FastAPI()
|
| 35 |
|
| 36 |
-
PIPELINE_MAP = {
|
| 37 |
-
"text-generation": "text-generation",
|
| 38 |
-
"sentiment-analysis": "sentiment-analysis",
|
| 39 |
-
"translation": "translation",
|
| 40 |
-
"fill-mask": "fill-mask",
|
| 41 |
-
"question-answering": "question-answering",
|
| 42 |
-
"text-to-speech": "text-to-speech",
|
| 43 |
-
"text-to-video": "text-to-video",
|
| 44 |
-
"text-to-image": "text-to-image"
|
| 45 |
-
}
|
| 46 |
-
|
| 47 |
class S3DirectStream:
|
| 48 |
def __init__(self, bucket_name):
|
| 49 |
self.s3_client = boto3.client(
|
|
@@ -73,33 +61,31 @@ class S3DirectStream:
|
|
| 73 |
|
| 74 |
def _get_model_file_parts(self, model_name):
|
| 75 |
try:
|
| 76 |
-
|
| 77 |
-
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=
|
| 78 |
-
model_files = [obj['Key'] for obj in files.get('Contents', []) if
|
| 79 |
return model_files
|
| 80 |
except Exception as e:
|
| 81 |
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}")
|
| 82 |
|
| 83 |
async def load_model_from_s3(self, model_name):
|
| 84 |
try:
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
model_prefix = f"{profile}/{model}".lower()
|
| 88 |
-
model_files = await self.get_model_file_parts(model_prefix)
|
| 89 |
|
| 90 |
if not model_files:
|
| 91 |
-
await self.download_and_upload_to_s3(
|
| 92 |
|
| 93 |
-
config_stream = await self.stream_from_s3(f"{
|
| 94 |
config_data = config_stream.read()
|
| 95 |
|
| 96 |
if not config_data:
|
| 97 |
-
raise HTTPException(status_code=500, detail=f"El archivo de configuraci贸n {
|
| 98 |
|
| 99 |
config_text = config_data.decode("utf-8")
|
| 100 |
config_json = json.loads(config_text)
|
| 101 |
|
| 102 |
-
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{
|
| 103 |
return model
|
| 104 |
|
| 105 |
except HTTPException as e:
|
|
@@ -109,21 +95,20 @@ class S3DirectStream:
|
|
| 109 |
|
| 110 |
async def load_tokenizer_from_s3(self, model_name):
|
| 111 |
try:
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
tokenizer_stream = await self.stream_from_s3(f"{profile}/{model}/tokenizer.json")
|
| 115 |
tokenizer_data = tokenizer_stream.read().decode("utf-8")
|
| 116 |
|
| 117 |
-
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{
|
| 118 |
return tokenizer
|
| 119 |
except Exception as e:
|
| 120 |
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
|
| 121 |
|
| 122 |
async def create_s3_folders(self, s3_key):
|
| 123 |
try:
|
| 124 |
-
folder_keys = s3_key.split('
|
| 125 |
for i in range(1, len(folder_keys)):
|
| 126 |
-
folder_key = '
|
| 127 |
if not await self.file_exists_in_s3(folder_key):
|
| 128 |
logger.info(f"Creando carpeta en S3: {folder_key}")
|
| 129 |
self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='')
|
|
@@ -138,21 +123,48 @@ class S3DirectStream:
|
|
| 138 |
except self.s3_client.exceptions.ClientError:
|
| 139 |
return False
|
| 140 |
|
| 141 |
-
async def download_and_upload_to_s3(self,
|
| 142 |
try:
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
with open(config_file, "rb") as file:
|
| 148 |
-
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{
|
| 149 |
|
| 150 |
-
if not await self.file_exists_in_s3(f"{
|
| 151 |
with open(tokenizer_file, "rb") as file:
|
| 152 |
-
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{
|
| 153 |
|
| 154 |
except Exception as e:
|
| 155 |
-
raise HTTPException(status_code=500, detail=f"Error al
|
| 156 |
|
| 157 |
def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
|
| 158 |
tokens = tokenizer.encode(text)
|
|
@@ -165,53 +177,26 @@ def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
|
|
| 165 |
def continue_generation(input_text, model, tokenizer, max_tokens=MAX_TOKENS):
|
| 166 |
generated_text = ""
|
| 167 |
while len(input_text) > 0:
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
generated_text += tokenizer.decode(output[0], skip_special_tokens=True)
|
| 172 |
-
input_text = input_text[len(input_text):]
|
| 173 |
return generated_text
|
| 174 |
|
| 175 |
-
@app.post("/
|
| 176 |
-
async def
|
| 177 |
try:
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
if not model_name or not task or not input_text:
|
| 183 |
-
raise HTTPException(status_code=400, detail="Faltan par谩metros en la solicitud.")
|
| 184 |
-
|
| 185 |
-
streamer = S3DirectStream(S3_BUCKET_NAME)
|
| 186 |
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
model = await streamer.load_model_from_s3(model_name)
|
| 190 |
-
tokenizer = await streamer.load_tokenizer_from_s3(model_name)
|
| 191 |
-
|
| 192 |
-
if task not in PIPELINE_MAP:
|
| 193 |
-
raise HTTPException(status_code=400, detail="Pipeline task no soportado")
|
| 194 |
-
|
| 195 |
-
nlp_pipeline = pipeline(PIPELINE_MAP[task], model=model, tokenizer=tokenizer)
|
| 196 |
-
|
| 197 |
-
result = await asyncio.to_thread(nlp_pipeline, input_text)
|
| 198 |
-
|
| 199 |
-
if len(result) > MAX_TOKENS:
|
| 200 |
-
chunks = split_text_by_tokens(result, tokenizer)
|
| 201 |
-
full_result = ""
|
| 202 |
-
for chunk in chunks:
|
| 203 |
-
full_result += continue_generation(chunk, model, tokenizer)
|
| 204 |
-
return {"result": full_result}
|
| 205 |
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
logger.error(f"Error al realizar la predicci贸n: {str(e.detail)}")
|
| 210 |
-
return JSONResponse(status_code=e.status_code, content={"detail": str(e.detail)})
|
| 211 |
|
| 212 |
except Exception as e:
|
| 213 |
-
|
| 214 |
-
return JSONResponse(status_code=500, content={"detail": "Error inesperado. Intenta m谩s tarde."})
|
| 215 |
|
| 216 |
if __name__ == "__main__":
|
| 217 |
import uvicorn
|
|
|
|
| 3 |
import logging
|
| 4 |
import boto3
|
| 5 |
from fastapi import FastAPI, HTTPException
|
| 6 |
+
from fastAPI.responses import JSONResponse
|
| 7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
import asyncio
|
| 10 |
|
|
|
|
| 11 |
logger = logging.getLogger(__name__)
|
| 12 |
logger.setLevel(logging.INFO)
|
| 13 |
console_handler = logging.StreamHandler()
|
|
|
|
| 32 |
|
| 33 |
app = FastAPI()
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
class S3DirectStream:
|
| 36 |
def __init__(self, bucket_name):
|
| 37 |
self.s3_client = boto3.client(
|
|
|
|
| 61 |
|
| 62 |
def _get_model_file_parts(self, model_name):
|
| 63 |
try:
|
| 64 |
+
model_name = model_name.replace("/", "-").lower()
|
| 65 |
+
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_name)
|
| 66 |
+
model_files = [obj['Key'] for obj in files.get('Contents', []) if model_name in obj['Key']]
|
| 67 |
return model_files
|
| 68 |
except Exception as e:
|
| 69 |
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}")
|
| 70 |
|
| 71 |
async def load_model_from_s3(self, model_name):
|
| 72 |
try:
|
| 73 |
+
model_name = model_name.replace("/", "-").lower()
|
| 74 |
+
model_files = await self.get_model_file_parts(model_name)
|
|
|
|
|
|
|
| 75 |
|
| 76 |
if not model_files:
|
| 77 |
+
await self.download_and_upload_to_s3(model_name)
|
| 78 |
|
| 79 |
+
config_stream = await self.stream_from_s3(f"{model_name}/config.json")
|
| 80 |
config_data = config_stream.read()
|
| 81 |
|
| 82 |
if not config_data:
|
| 83 |
+
raise HTTPException(status_code=500, detail=f"El archivo de configuraci贸n {model_name}/config.json est谩 vac铆o o no se pudo leer.")
|
| 84 |
|
| 85 |
config_text = config_data.decode("utf-8")
|
| 86 |
config_json = json.loads(config_text)
|
| 87 |
|
| 88 |
+
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_name}", config=config_json, from_tf=False)
|
| 89 |
return model
|
| 90 |
|
| 91 |
except HTTPException as e:
|
|
|
|
| 95 |
|
| 96 |
async def load_tokenizer_from_s3(self, model_name):
|
| 97 |
try:
|
| 98 |
+
model_name = model_name.replace("/", "-").lower()
|
| 99 |
+
tokenizer_stream = await self.stream_from_s3(f"{model_name}/tokenizer.json")
|
|
|
|
| 100 |
tokenizer_data = tokenizer_stream.read().decode("utf-8")
|
| 101 |
|
| 102 |
+
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}")
|
| 103 |
return tokenizer
|
| 104 |
except Exception as e:
|
| 105 |
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
|
| 106 |
|
| 107 |
async def create_s3_folders(self, s3_key):
|
| 108 |
try:
|
| 109 |
+
folder_keys = s3_key.split('-')
|
| 110 |
for i in range(1, len(folder_keys)):
|
| 111 |
+
folder_key = '-'.join(folder_keys[:i]) + '/'
|
| 112 |
if not await self.file_exists_in_s3(folder_key):
|
| 113 |
logger.info(f"Creando carpeta en S3: {folder_key}")
|
| 114 |
self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='')
|
|
|
|
| 123 |
except self.s3_client.exceptions.ClientError:
|
| 124 |
return False
|
| 125 |
|
| 126 |
+
async def download_and_upload_to_s3(self, model_name, force_download=False):
|
| 127 |
try:
|
| 128 |
+
if force_download:
|
| 129 |
+
logger.info(f"Forzando la descarga del modelo {model_name} y la carga a S3.")
|
| 130 |
+
|
| 131 |
+
model_name = model_name.replace("/", "-").lower()
|
| 132 |
+
|
| 133 |
+
if not await self.file_exists_in_s3(f"{model_name}/config.json") or not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
|
| 134 |
+
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN, force_download=force_download)
|
| 135 |
+
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN, force_download=force_download)
|
| 136 |
+
|
| 137 |
+
await self.create_s3_folders(f"{model_name}/")
|
| 138 |
|
| 139 |
+
if not await self.file_exists_in_s3(f"{model_name}/config.json"):
|
| 140 |
+
with open(config_file, "rb") as file:
|
| 141 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file)
|
| 142 |
+
|
| 143 |
+
if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
|
| 144 |
+
with open(tokenizer_file, "rb") as file:
|
| 145 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file)
|
| 146 |
+
else:
|
| 147 |
+
logger.info(f"Los archivos del modelo {model_name} ya existen en S3. No es necesario descargarlos de nuevo.")
|
| 148 |
+
|
| 149 |
+
except Exception as e:
|
| 150 |
+
raise HTTPException(status_code=500, detail=f"Error al descargar o cargar archivos desde Hugging Face a S3: {e}")
|
| 151 |
+
|
| 152 |
+
async def resume_download(self, model_name):
|
| 153 |
+
try:
|
| 154 |
+
logger.info(f"Reanudando la descarga del modelo {model_name} desde Hugging Face.")
|
| 155 |
+
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN, resume_download=True)
|
| 156 |
+
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN, resume_download=True)
|
| 157 |
+
|
| 158 |
+
if not await self.file_exists_in_s3(f"{model_name}/config.json"):
|
| 159 |
with open(config_file, "rb") as file:
|
| 160 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file)
|
| 161 |
|
| 162 |
+
if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
|
| 163 |
with open(tokenizer_file, "rb") as file:
|
| 164 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file)
|
| 165 |
|
| 166 |
except Exception as e:
|
| 167 |
+
raise HTTPException(status_code=500, detail=f"Error al reanudar la descarga o cargar archivos desde Hugging Face a S3: {e}")
|
| 168 |
|
| 169 |
def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
|
| 170 |
tokens = tokenizer.encode(text)
|
|
|
|
| 177 |
def continue_generation(input_text, model, tokenizer, max_tokens=MAX_TOKENS):
|
| 178 |
generated_text = ""
|
| 179 |
while len(input_text) > 0:
|
| 180 |
+
chunks = split_text_by_tokens(input_text, tokenizer, max_tokens)
|
| 181 |
+
for chunk in chunks:
|
| 182 |
+
generated_text += model.generate(chunk)
|
|
|
|
|
|
|
| 183 |
return generated_text
|
| 184 |
|
| 185 |
+
@app.post("/generate")
|
| 186 |
+
async def generate_text(model_name: str, input_text: str):
|
| 187 |
try:
|
| 188 |
+
model_loader = S3DirectStream(S3_BUCKET_NAME)
|
| 189 |
+
model = await model_loader.load_model_from_s3(model_name)
|
| 190 |
+
tokenizer = await model_loader.load_tokenizer_from_s3(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
+
chunks = split_text_by_tokens(input_text, tokenizer, max_tokens=MAX_TOKENS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
+
generated_text = continue_generation(input_text, model, tokenizer)
|
| 195 |
+
|
| 196 |
+
return {"generated_text": generated_text}
|
|
|
|
|
|
|
| 197 |
|
| 198 |
except Exception as e:
|
| 199 |
+
return JSONResponse(status_code=500, content={"detail": str(e)})
|
|
|
|
| 200 |
|
| 201 |
if __name__ == "__main__":
|
| 202 |
import uvicorn
|