Update app.py
Browse files
app.py
CHANGED
@@ -4,11 +4,12 @@ import boto3
|
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from pydantic import BaseModel
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
7 |
-
from
|
8 |
import torch
|
|
|
9 |
import asyncio
|
|
|
10 |
|
11 |
-
# Configuraci贸n de logs
|
12 |
logger = logging.getLogger(__name__)
|
13 |
logger.setLevel(logging.INFO)
|
14 |
console_handler = logging.StreamHandler()
|
@@ -16,7 +17,6 @@ formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
|
16 |
console_handler.setFormatter(formatter)
|
17 |
logger.addHandler(console_handler)
|
18 |
|
19 |
-
# Configuraci贸n de AWS y S3
|
20 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
21 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
22 |
AWS_REGION = os.getenv("AWS_REGION")
|
@@ -32,16 +32,13 @@ s3_client = boto3.client(
|
|
32 |
region_name=AWS_REGION
|
33 |
)
|
34 |
|
35 |
-
# Crear la aplicaci贸n FastAPI
|
36 |
app = FastAPI()
|
37 |
|
38 |
-
# Modelo de datos para la solicitud
|
39 |
class GenerateRequest(BaseModel):
|
40 |
model_name: str
|
41 |
input_text: str
|
42 |
-
task_type: str
|
43 |
|
44 |
-
# Clase para gestionar el acceso a S3
|
45 |
class S3DirectStream:
|
46 |
def __init__(self, bucket_name):
|
47 |
self.s3_client = boto3.client(
|
@@ -52,63 +49,102 @@ class S3DirectStream:
|
|
52 |
)
|
53 |
self.bucket_name = bucket_name
|
54 |
|
55 |
-
# Funci贸n para obtener el archivo desde S3
|
56 |
async def stream_from_s3(self, key):
|
57 |
loop = asyncio.get_event_loop()
|
58 |
return await loop.run_in_executor(None, self._stream_from_s3, key)
|
59 |
|
60 |
def _stream_from_s3(self, key):
|
61 |
try:
|
|
|
62 |
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
|
63 |
-
file_content = response['Body'].read()
|
64 |
-
if not file_content:
|
65 |
-
raise HTTPException(status_code=404, detail=f"El archivo {key} est谩 vac铆o.")
|
66 |
return file_content
|
67 |
except self.s3_client.exceptions.NoSuchKey:
|
68 |
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
|
69 |
except Exception as e:
|
|
|
70 |
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}")
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
async def load_model_from_s3(self, model_name):
|
74 |
try:
|
|
|
75 |
model_name = model_name.replace("/", "-").lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
model_bytes = await self.stream_from_s3(f"{model_name}/pytorch_model.bin")
|
77 |
-
|
78 |
-
|
79 |
-
return model
|
80 |
-
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_name}/pytorch_model.bin")
|
81 |
return model
|
|
|
82 |
except HTTPException as e:
|
83 |
raise e
|
84 |
except Exception as e:
|
|
|
85 |
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {e}")
|
86 |
|
87 |
-
# Cargar el tokenizer desde S3
|
88 |
async def load_tokenizer_from_s3(self, model_name):
|
89 |
try:
|
|
|
90 |
model_name = model_name.replace("/", "-").lower()
|
91 |
tokenizer_bytes = await self.stream_from_s3(f"{model_name}/tokenizer.json")
|
92 |
-
|
93 |
-
raise HTTPException(status_code=404, detail="El archivo tokenizer.json est谩 vac铆o o no existe.")
|
94 |
-
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}/tokenizer.json")
|
95 |
return tokenizer
|
96 |
except Exception as e:
|
|
|
97 |
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
|
98 |
|
99 |
-
|
100 |
-
async def get_model_file_parts(self, model_name):
|
101 |
try:
|
|
|
|
|
|
|
102 |
model_name = model_name.replace("/", "-").lower()
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
except Exception as e:
|
109 |
-
|
|
|
|
|
110 |
|
111 |
-
# Endpoint para la generaci贸n
|
112 |
@app.post("/generate")
|
113 |
async def generate(request: GenerateRequest):
|
114 |
try:
|
@@ -116,41 +152,54 @@ async def generate(request: GenerateRequest):
|
|
116 |
model_name = request.model_name
|
117 |
input_text = request.input_text
|
118 |
|
|
|
|
|
119 |
s3_direct_stream = S3DirectStream(S3_BUCKET_NAME)
|
120 |
|
121 |
-
# Cargar el modelo y tokenizer desde S3
|
122 |
model = await s3_direct_stream.load_model_from_s3(model_name)
|
123 |
tokenizer = await s3_direct_stream.load_tokenizer_from_s3(model_name)
|
124 |
|
125 |
-
|
|
|
126 |
if task_type == "text-to-text":
|
127 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
|
128 |
result = generator(input_text, max_length=MAX_TOKENS, num_return_sequences=1)
|
|
|
129 |
return {"result": result[0]["generated_text"]}
|
130 |
|
131 |
elif task_type == "text-to-image":
|
132 |
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=0)
|
133 |
image = generator(input_text)
|
|
|
134 |
return {"image": image}
|
135 |
|
136 |
-
elif task_type == "text-to-audio" or task_type == "text-to-speech":
|
137 |
-
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=0)
|
138 |
-
audio = generator(input_text)
|
139 |
-
return {"audio": audio}
|
140 |
-
|
141 |
elif task_type == "text-to-video":
|
142 |
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=0)
|
143 |
video = generator(input_text)
|
|
|
144 |
return {"video": video}
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
else:
|
147 |
raise HTTPException(status_code=400, detail="Tipo de tarea no soportado.")
|
|
|
148 |
except HTTPException as e:
|
149 |
raise e
|
150 |
except Exception as e:
|
151 |
raise HTTPException(status_code=500, detail=f"Error en la generaci贸n: {str(e)}")
|
152 |
|
153 |
-
|
154 |
if __name__ == "__main__":
|
155 |
import uvicorn
|
156 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from pydantic import BaseModel
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
import torch
|
9 |
+
import safetensors
|
10 |
import asyncio
|
11 |
+
from tqdm import tqdm # Importar tqdm para la barra de progreso
|
12 |
|
|
|
13 |
logger = logging.getLogger(__name__)
|
14 |
logger.setLevel(logging.INFO)
|
15 |
console_handler = logging.StreamHandler()
|
|
|
17 |
console_handler.setFormatter(formatter)
|
18 |
logger.addHandler(console_handler)
|
19 |
|
|
|
20 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
21 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
22 |
AWS_REGION = os.getenv("AWS_REGION")
|
|
|
32 |
region_name=AWS_REGION
|
33 |
)
|
34 |
|
|
|
35 |
app = FastAPI()
|
36 |
|
|
|
37 |
class GenerateRequest(BaseModel):
|
38 |
model_name: str
|
39 |
input_text: str
|
40 |
+
task_type: str # Added task type to handle different tasks (e.g., text-to-image, text-to-speech)
|
41 |
|
|
|
42 |
class S3DirectStream:
|
43 |
def __init__(self, bucket_name):
|
44 |
self.s3_client = boto3.client(
|
|
|
49 |
)
|
50 |
self.bucket_name = bucket_name
|
51 |
|
|
|
52 |
async def stream_from_s3(self, key):
|
53 |
loop = asyncio.get_event_loop()
|
54 |
return await loop.run_in_executor(None, self._stream_from_s3, key)
|
55 |
|
56 |
def _stream_from_s3(self, key):
|
57 |
try:
|
58 |
+
logger.info(f"Descargando archivo {key} desde S3...")
|
59 |
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
|
60 |
+
file_content = response['Body'].read() # This returns a bytes object
|
|
|
|
|
61 |
return file_content
|
62 |
except self.s3_client.exceptions.NoSuchKey:
|
63 |
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
|
64 |
except Exception as e:
|
65 |
+
logger.error(f"Error al descargar {key} desde S3: {str(e)}")
|
66 |
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}")
|
67 |
|
68 |
+
async def get_model_file_parts(self, model_name):
|
69 |
+
loop = asyncio.get_event_loop()
|
70 |
+
return await loop.run_in_executor(None, self._get_model_file_parts, model_name)
|
71 |
+
|
72 |
+
def _get_model_file_parts(self, model_name):
|
73 |
+
try:
|
74 |
+
model_name = model_name.replace("/", "-").lower()
|
75 |
+
logger.info(f"Obteniendo archivos del modelo {model_name} desde S3...")
|
76 |
+
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_name)
|
77 |
+
model_files = [obj['Key'] for obj in files.get('Contents', []) if model_name in obj['Key']]
|
78 |
+
if not model_files:
|
79 |
+
raise HTTPException(status_code=404, detail=f"Archivos del modelo {model_name} no encontrados.")
|
80 |
+
return model_files
|
81 |
+
except Exception as e:
|
82 |
+
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}")
|
83 |
+
|
84 |
async def load_model_from_s3(self, model_name):
|
85 |
try:
|
86 |
+
logger.info(f"Cargando modelo {model_name} desde S3...")
|
87 |
model_name = model_name.replace("/", "-").lower()
|
88 |
+
model_files = await self.get_model_file_parts(model_name)
|
89 |
+
|
90 |
+
if 'pytorch_model.bin' not in model_files:
|
91 |
+
raise HTTPException(status_code=404, detail="Archivo 'pytorch_model.bin' no encontrado en S3")
|
92 |
+
if 'tokenizer.json' not in model_files:
|
93 |
+
raise HTTPException(status_code=404, detail="Archivo 'tokenizer.json' no encontrado en S3")
|
94 |
+
|
95 |
model_bytes = await self.stream_from_s3(f"{model_name}/pytorch_model.bin")
|
96 |
+
logger.info(f"Modelo descargado correctamente. Cargando el modelo en memoria...")
|
97 |
+
model = AutoModelForCausalLM.from_pretrained(model_bytes, config=model_name)
|
|
|
|
|
98 |
return model
|
99 |
+
|
100 |
except HTTPException as e:
|
101 |
raise e
|
102 |
except Exception as e:
|
103 |
+
logger.error(f"Error al cargar el modelo desde S3: {e}")
|
104 |
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {e}")
|
105 |
|
|
|
106 |
async def load_tokenizer_from_s3(self, model_name):
|
107 |
try:
|
108 |
+
logger.info(f"Cargando tokenizer del modelo {model_name} desde S3...")
|
109 |
model_name = model_name.replace("/", "-").lower()
|
110 |
tokenizer_bytes = await self.stream_from_s3(f"{model_name}/tokenizer.json")
|
111 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_bytes)
|
|
|
|
|
112 |
return tokenizer
|
113 |
except Exception as e:
|
114 |
+
logger.error(f"Error al cargar el tokenizer desde S3: {e}")
|
115 |
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
|
116 |
|
117 |
+
async def download_and_upload_to_s3(self, model_name, force_download=False):
|
|
|
118 |
try:
|
119 |
+
if force_download:
|
120 |
+
logger.info(f"Forzando la descarga del modelo {model_name} y la carga a S3.")
|
121 |
+
|
122 |
model_name = model_name.replace("/", "-").lower()
|
123 |
+
|
124 |
+
if not await self.file_exists_in_s3(f"{model_name}/pytorch_model.bin") or not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
|
125 |
+
logger.info(f"Descargando archivos del modelo {model_name} desde Hugging Face...")
|
126 |
+
model_file = hf_hub_download(repo_id=model_name, filename="pytorch_model.bin", token=HUGGINGFACE_HUB_TOKEN, force_download=force_download)
|
127 |
+
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN, force_download=force_download)
|
128 |
+
|
129 |
+
await self.create_s3_folders(f"{model_name}/")
|
130 |
+
|
131 |
+
if not await self.file_exists_in_s3(f"{model_name}/pytorch_model.bin"):
|
132 |
+
with open(model_file, "rb") as file:
|
133 |
+
logger.info(f"Cargando archivo {model_name}/pytorch_model.bin a S3...")
|
134 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/pytorch_model.bin", Body=file)
|
135 |
+
|
136 |
+
if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
|
137 |
+
with open(tokenizer_file, "rb") as file:
|
138 |
+
logger.info(f"Cargando archivo {model_name}/tokenizer.json a S3...")
|
139 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file)
|
140 |
+
else:
|
141 |
+
logger.info(f"Los archivos del modelo {model_name} ya existen en S3. No es necesario descargarlos de nuevo.")
|
142 |
+
|
143 |
except Exception as e:
|
144 |
+
logger.error(f"Error al descargar o cargar archivos desde Hugging Face a S3: {e}")
|
145 |
+
raise HTTPException(status_code=500, detail=f"Error al descargar o cargar archivos desde Hugging Face a S3: {e}")
|
146 |
+
|
147 |
|
|
|
148 |
@app.post("/generate")
|
149 |
async def generate(request: GenerateRequest):
|
150 |
try:
|
|
|
152 |
model_name = request.model_name
|
153 |
input_text = request.input_text
|
154 |
|
155 |
+
logger.info(f"Iniciando la generaci贸n para el modelo {model_name} con el tipo de tarea {task_type}...")
|
156 |
+
|
157 |
s3_direct_stream = S3DirectStream(S3_BUCKET_NAME)
|
158 |
|
|
|
159 |
model = await s3_direct_stream.load_model_from_s3(model_name)
|
160 |
tokenizer = await s3_direct_stream.load_tokenizer_from_s3(model_name)
|
161 |
|
162 |
+
logger.info(f"Modelo y tokenizer cargados correctamente. Procesando tarea {task_type}...")
|
163 |
+
|
164 |
if task_type == "text-to-text":
|
165 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
|
166 |
result = generator(input_text, max_length=MAX_TOKENS, num_return_sequences=1)
|
167 |
+
logger.info(f"Generaci贸n completada: {result[0]['generated_text']}")
|
168 |
return {"result": result[0]["generated_text"]}
|
169 |
|
170 |
elif task_type == "text-to-image":
|
171 |
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=0)
|
172 |
image = generator(input_text)
|
173 |
+
logger.info(f"Imagen generada.")
|
174 |
return {"image": image}
|
175 |
|
|
|
|
|
|
|
|
|
|
|
176 |
elif task_type == "text-to-video":
|
177 |
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=0)
|
178 |
video = generator(input_text)
|
179 |
+
logger.info(f"Video generado.")
|
180 |
return {"video": video}
|
181 |
|
182 |
+
elif task_type == "text-to-speech":
|
183 |
+
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=0)
|
184 |
+
audio = generator(input_text)
|
185 |
+
logger.info(f"Audio generado.")
|
186 |
+
return {"audio": audio}
|
187 |
+
|
188 |
+
elif task_type == "text-to-audio":
|
189 |
+
generator = pipeline("text-to-audio", model=model, tokenizer=tokenizer, device=0)
|
190 |
+
audio = generator(input_text)
|
191 |
+
logger.info(f"Audio generado.")
|
192 |
+
return {"audio": audio}
|
193 |
+
|
194 |
else:
|
195 |
raise HTTPException(status_code=400, detail="Tipo de tarea no soportado.")
|
196 |
+
|
197 |
except HTTPException as e:
|
198 |
raise e
|
199 |
except Exception as e:
|
200 |
raise HTTPException(status_code=500, detail=f"Error en la generaci贸n: {str(e)}")
|
201 |
|
202 |
+
|
203 |
if __name__ == "__main__":
|
204 |
import uvicorn
|
205 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|