File size: 5,126 Bytes
574481e
 
 
 
 
 
d88ff3b
574481e
 
 
d88ff3b
574481e
 
d88ff3b
 
 
 
 
 
 
 
 
9952320
d88ff3b
 
 
 
 
 
 
 
 
 
9952320
 
 
 
d88ff3b
 
 
 
 
 
 
 
 
 
9952320
 
 
 
 
 
 
d88ff3b
 
 
 
 
 
 
574481e
 
 
d88ff3b
574481e
d88ff3b
 
 
574481e
 
d88ff3b
 
7a66365
574481e
d88ff3b
 
574481e
 
 
d88ff3b
574481e
 
d88ff3b
9952320
 
d88ff3b
9952320
 
 
 
 
 
d88ff3b
 
 
574481e
 
 
 
d88ff3b
 
574481e
 
 
 
 
 
9952320
574481e
 
 
 
 
 
d88ff3b
574481e
 
 
 
 
 
 
 
7a66365
574481e
9952320
574481e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d88ff3b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import json
import os
from transformers import AutoTokenizer, BertModel, Wav2Vec2Model
from utils.audio_processing import AudioProcessor
import torchaudio
import torch.nn as nn
import torch.nn.functional as F
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from transformers import AutoModelForSequenceClassification, AutoConfig, Wav2Vec2ForPreTraining

# 下载模型
# huggingface_hub 仓库下载
# model_path = hf_hub_download(repo_id="liloge/Group7_model_test", filename="model.safetensors")
# 本地下载

import torch
import torch.nn as nn
from transformers import AutoModelForSequenceClassification, AutoConfig, Wav2Vec2ForPreTraining

class MultimodalClassifier(nn.Module):
    def __init__(self, wav2vec2_config_path):
        super().__init__()
        
        # **加载微调后的 BERT**
        self.bert = AutoModelForSequenceClassification.from_pretrained(
            "bert-base-uncased", num_labels=7
        )
        self.bert.classifier = nn.Sequential(
            nn.Dropout(0.5),
            nn.Linear(self.bert.config.hidden_size, self.bert.config.num_labels)
        )
        # try:
        #     self.bert.load_state_dict(torch.load(bert_ckpt_path, map_location=torch.device("cpu")), strict=True)
        # except Exception as e:
        #     print(f"❌ 加载 `{bert_ckpt_path}` 失败: {e}")
            
        # **先加载 Wav2Vec2**
        config = AutoConfig.from_pretrained(wav2vec2_config_path, num_labels=7)
        self.wav2vec2 = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base", config=config)

        # **再修改 Wav2Vec2 的分类头**
        self.wav2vec2.classifier = nn.Sequential(
            nn.Dropout(0.5),
            nn.Linear(self.wav2vec2.config.hidden_size, self.wav2vec2.config.num_labels)
        )
        # # **加载 safetensors 权重**
        # from safetensors.torch import load_file
        # state_dict = load_file(wav2vec2_safetensors_path)
        # try:
        #     self.wav2vec2.load_state_dict(state_dict, strict=False)
        # except Exception as e:
        #     print(f"❌ 加载 `{wav2vec2_safetensors_path}` 失败: {e}")

        # **拼接特征的分类头**
        self.classifier = nn.Sequential(
            nn.Linear(self.bert.config.hidden_size + self.wav2vec2.config.hidden_size, 256),
            nn.ReLU(),
            nn.Dropout(0.7),
            nn.Linear(256, 7)  # 7分类任务
        )

    def forward(self, text_input, audio_input):
        # **文本特征**
        text_outputs = self.bert(**text_input, output_hidden_states=True)
        text_features = text_outputs.hidden_states[-1][:, 0, :]

        # **音频特征**
        audio_outputs = self.wav2vec2(audio_input, output_hidden_states=True)
        audio_features = audio_outputs.hidden_states[-1][:, 0, :]

        # **拼接特征**

        combined_features = torch.cat((text_features, audio_features), dim=-1)

        # **分类**
        logits = self.classifier(combined_features)
        return logits


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# **定义路径**
wav2vec2_config_path = r"models/config.json"
model_path = r"models/model.safetensors"

# **加载模型及其参数**
model = MultimodalClassifier(wav2vec2_config_path).to(device)

state_dict = load_file(model_path)
model.load_state_dict(state_dict, strict=True)
model.to(device)
model.eval()

print("✅ 微调的 BERT + Wav2Vec2 模型加载成功!")

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

def preprocess_text(text):
    text_inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
    return text_inputs.to(device)

def preprocess_audio(audio_path):
    waveform, sample_rate = torchaudio.load(audio_path)
    waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)
    return waveform.to(device)

labels = ["Neutral", "Joy", "Sad", "Angry", "Surprised", "Fearful", "Disgusted"]

def predict_emotion(text, audio):
    text_inputs = preprocess_text(text)
    audio_inputs = preprocess_audio(audio)

    with torch.no_grad():
        output = model(text_input=text_inputs, audio_input=audio_inputs)  # (1, 7) logits
        probabilities = F.softmax(output, dim=1).squeeze().tolist()  # 归一化为概率

    return {labels[i]: f"{probabilities[i]*100:.2f}%" for i in range(len(labels))}

def generate_transcript(audio_file):
    """生成音频的文字转写"""
    return audio_file.name  # 直接返回音频文件的名称

def save_history(audio_file, transcript, emotions):
    """保存分析历史记录到文件"""
    history_file = r"history/history.json"
    
    if not os.path.exists(history_file):
        with open(history_file, 'w') as f:
            json.dump([], f)
    
    with open(history_file, 'r') as f:
        history = json.load(f)
    
    history.append({
        "audio_file": audio_file.name,
        "transcript": transcript,
        "emotions": emotions,
    })
    
    with open(history_file, 'w') as f:
        json.dump(history, f, indent=4)