Spaces:
Sleeping
Sleeping
import streamlit as st | |
import time | |
import cv2 | |
import pandas | |
from PIL import Image | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.keras.applications.resnet50 import preprocess_input | |
from tensorflow.keras.preprocessing.image import img_to_array | |
st.title('Palm Identification') | |
st.markdown("This is a Deep Learning application to identify if a satellite image clip contains Palm trees.\n") | |
st.markdown('The predicting result will be "Palm", or "Others".') | |
st.markdown('You can click "Browse files" multiple times until adding all images before generating prediction.\n') | |
img_height = 224 | |
img_width = 224 | |
class_names = ['Palm', 'Others'] | |
model = tf.keras.models.load_model('model') | |
state = st.session_state | |
if 'file_uploader_key' not in state: | |
state['file_uploader_key'] = 0 | |
if "uploaded_files" not in state: | |
state["uploaded_files"] = [] | |
uploaded_files = st.file_uploader( | |
"Upload images", | |
type="jpg" or 'jpeg' or 'bmp' or 'png' or 'tif', | |
accept_multiple_files=True, | |
key=state['file_uploader_key']) | |
if uploaded_files: | |
state["uploaded_files"] = uploaded_files | |
if st.button("Generate prediction"): | |
for file in uploaded_files: | |
img = Image.open(file) | |
img_array = img_to_array(img) | |
img_array = tf.expand_dims(img_array, axis = 0) # Create a batch | |
processed_image = preprocess_input(img_array) | |
predictions = model.predict(processed_image) | |
score = predictions[0] | |
st.markdown("Predicted class of the image {} is : {}".format(file, class_names[np.argmax(score)])) | |
if st.button("Clear uploaded files"): | |
state["file_uploader_key"] += 1 | |
time.sleep(.5) | |
st.experimental_rerun() | |