Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -20,30 +20,26 @@ st.markdown('You can click "Browse files" multiple times until adding all images
|
|
20 |
img_height = 224
|
21 |
img_width = 224
|
22 |
class_names = ['Palm', 'Others']
|
|
|
23 |
|
24 |
-
|
25 |
-
st.image
|
|
|
26 |
|
27 |
-
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
if Generate_pred:
|
33 |
-
for file in uploaded_file:
|
34 |
-
img = Image.open(file)
|
35 |
-
img_array = img_to_array(img)
|
36 |
-
img_array = tf.expand_dims(img_array, axis = 0) # Create a batch
|
37 |
-
processed_image = preprocess_input(img_array)
|
38 |
-
|
39 |
-
predictions = model.predict(processed_image)
|
40 |
-
score = predictions[0]
|
41 |
-
st.markdown("Predicted class of the image {} is : {}".format(file, class_names[np.argmax(score)]))
|
42 |
-
|
43 |
-
with st.form("list", clear_on_submit=True):
|
44 |
-
submitted = st.form_submit_button("clear")
|
45 |
-
if submitted:
|
46 |
-
uploaded_file = None
|
47 |
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
img_height = 224
|
21 |
img_width = 224
|
22 |
class_names = ['Palm', 'Others']
|
23 |
+
model = tf.keras.models.load_model('model')
|
24 |
|
25 |
+
with st.form("my-form", clear_on_submit=True):
|
26 |
+
uploaded_file = st.file_uploader("Upload image files", type="jpg", accept_multiple_files=True)
|
27 |
+
submitted = st.form_submit_button("UPLOAD!")
|
28 |
|
29 |
+
if submitted and file is not None:
|
30 |
+
st.write("UPLOADED!")
|
31 |
+
st.image(uploaded_file, width=100)
|
32 |
|
33 |
+
Generate_pred = st.button("Generate Prediction")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
if Generate_pred:
|
36 |
+
for file in uploaded_file:
|
37 |
+
img = Image.open(file)
|
38 |
+
img_array = img_to_array(img)
|
39 |
+
img_array = tf.expand_dims(img_array, axis = 0) # Create a batch
|
40 |
+
processed_image = preprocess_input(img_array)
|
41 |
+
|
42 |
+
predictions = model.predict(processed_image)
|
43 |
+
score = predictions[0]
|
44 |
+
st.markdown("Predicted class of the image {} is : {}".format(file, class_names[np.argmax(score)]))
|
45 |
+
|