lily-hust commited on
Commit
603a3b6
·
1 Parent(s): ec811c5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -19
app.py CHANGED
@@ -14,33 +14,31 @@ st.markdown('You can click "Browse files" multiple times until adding all images
14
 
15
  #uploaded_file = st.file_uploader("Upload an image file", type="jpg", accept_multiple_files=True)
16
 
17
- imageContainer = st.empty()
18
- uploaded_file = imageContainer.file_uploader("Upload an image file", type="jpg", accept_multiple_files=True)
19
- imageContainer.image(uploaded_file, width=100)
20
 
21
- closeImage = st.button("clear all images")
 
 
 
 
22
 
23
  img_height = 224
24
  img_width = 224
25
  class_names = ['Palm', 'Others']
26
 
27
  model = tf.keras.models.load_model('model')
28
- Generate_pred = st.button("Generate Prediction")
29
 
30
 
31
  if uploaded_file is not None:
32
- if Generate_pred:
33
- for file in uploaded_file:
34
- img = Image.open(file)
35
- img_array = img_to_array(img)
36
- img_array = tf.expand_dims(img_array, axis = 0) # Create a batch
37
- processed_image = preprocess_input(img_array)
38
-
39
- predictions = model.predict(processed_image)
40
- score = predictions[0]
41
- st.markdown("Predicted class of the image {} is : {}".format(file, class_names[np.argmax(score)]))
 
42
 
43
- if closeImage:
44
- imageContainer.empty()
45
- if uploaded_file is not None:
46
- del uploaded_file
 
14
 
15
  #uploaded_file = st.file_uploader("Upload an image file", type="jpg", accept_multiple_files=True)
16
 
17
+ #imageContainer = st.empty()
 
 
18
 
19
+ #closeImage = st.button("clear all images")
20
+ with st.form("list", clear_on_submit=True):
21
+ uploaded_file = st.file_uploader("Upload image files", type="jpg", accept_multiple_files=True)
22
+ submitted = st.form_submit_button("submit")
23
+ st.image(uploaded_file, width=100)
24
 
25
  img_height = 224
26
  img_width = 224
27
  class_names = ['Palm', 'Others']
28
 
29
  model = tf.keras.models.load_model('model')
 
30
 
31
 
32
  if uploaded_file is not None:
33
+ Generate_pred = st.button("Generate Prediction")
34
+ if Generate_pred:
35
+ for file in uploaded_file:
36
+ img = Image.open(file)
37
+ img_array = img_to_array(img)
38
+ img_array = tf.expand_dims(img_array, axis = 0) # Create a batch
39
+ processed_image = preprocess_input(img_array)
40
+
41
+ predictions = model.predict(processed_image)
42
+ score = predictions[0]
43
+ st.markdown("Predicted class of the image {} is : {}".format(file, class_names[np.argmax(score)]))
44