lily-hust commited on
Commit
895077e
·
1 Parent(s): 7f5deb9

Delete deploypalm.py

Browse files
Files changed (1) hide show
  1. deploypalm.py +0 -36
deploypalm.py DELETED
@@ -1,36 +0,0 @@
1
- import os
2
- import streamlit as st
3
- import cv2
4
- from PIL import Image
5
- import numpy as np
6
- import tensorflow as tf
7
- from tensorflow.keras.applications.resnet50 import preprocess_input
8
- from tensorflow.keras.preprocessing.image import img_to_array
9
-
10
- st.title('Palm Identification')
11
- st.markdown("This is a Deep Learning application to identify if a satellite image clip contains Palm trees.\n")
12
- st.markdown('The predicting result will be "Palm", or "Others".')
13
- st.markdown('You can click "Brows files" multiple times until adding all images before generating prediction.\n')
14
-
15
- uploaded_file = st.file_uploader("Upload an image file", type="jpg")
16
- st.image(uploaded_file, width=100)
17
-
18
- img_height = 224
19
- img_width = 224
20
- class_names = ['Palm', 'Others']
21
-
22
- model = tf.keras.models.load_model('model')
23
-
24
- if uploaded_file is not None:
25
- Generate_pred = st.button("Generate Prediction")
26
- if Generate_pred:
27
- for file in uploaded_file:
28
- img = Image.open(file)
29
- img_array = img_to_array(img)
30
- img_array = tf.expand_dims(img_array, axis = 0) # Create a batch
31
- processed_image = preprocess_input(img_array)
32
-
33
- predictions = model.predict(processed_image)
34
- score = predictions[0]
35
- st.markdown("Predicted class of the image {} is : {}".format(file, class_names[np.argmax(score)]))
36
-