import streamlit as st from random import randint #from .session_state import get_session_state import cv2 import pandas from PIL import Image import numpy as np import tensorflow as tf from tensorflow.keras.applications.resnet50 import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array st.title('Palm Identification') st.markdown("This is a Deep Learning application to identify if a satellite image clip contains Palm trees.\n") st.markdown('The predicting result will be "Palm", or "Others".') st.markdown('You can click "Browse files" multiple times until adding all images before generating prediction.\n') #uploaded_file = st.file_uploader("Upload an image file", type="jpg", accept_multiple_files=True) #imageContainer = st.empty() #closeImage = st.button("clear all images") img_height = 224 img_width = 224 class_names = ['Palm', 'Others'] model = tf.keras.models.load_model('model') state = st.session_state.get_session_state() if not state.widget_key: state.widget_key = str(randint(1000, 100000000)) uploaded_file = st.file_uploader( "Choose a file", accept_multiple_files=True, key=state.widget_key) if st.button('clear uploaded_file'): state.widget_key = str(randint(1000, 100000000)) state.sync() #Generate_pred = st.button("Generate Prediction") #with st.form("form", clear_on_submit=True): # uploaded_file = st.file_uploader("Upload image files", type="jpg", accept_multiple_files=True) # if uploaded_file is not None: # st.image(uploaded_file, width=100) # submitted = st.form_submit_button("Toggle here to predict or to delete the data") # if submitted and uploaded_file is not None: # for file in uploaded_file: # img = Image.open(file) # img_array = img_to_array(img) # img_array = tf.expand_dims(img_array, axis = 0) # Create a batch # processed_image = preprocess_input(img_array) # predictions = model.predict(processed_image) # score = predictions[0] # st.markdown("Predicted class of the image {} is : {}".format(file, class_names[np.argmax(score)])) # uploaded_file = None