Spaces:
Sleeping
Sleeping
import streamlit as st | |
import cv2 | |
import pandas | |
from PIL import Image | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.keras.applications.resnet50 import preprocess_input | |
from tensorflow.keras.preprocessing.image import img_to_array | |
st.title('Jacaranda Identification') | |
st.markdown('This is a Deep Learning application to identify if a satellite image clip contains Jacaranda trees. The predicting result will be "Jacaranda", or "Others". You can click "Brows files" multiple times until adding all images before generating prediction.') | |
uploaded_file = st.file_uploader("Upload image files", type="jpg", accept_multiple_files=True) | |
#image_iterator = paginator("Select a page", uploaded_file) | |
#indices_on_page, images_on_page = map(list, zip(*image_iterator)) | |
st.image(uploaded_file, width=100) | |
img_height = 224 | |
img_width = 224 | |
class_names = ['Jacaranda', 'Others'] | |
model = tf.keras.models.load_model('model') | |
if uploaded_file is not None: | |
#n = len(uploaded_file) | |
#row_size = 5 | |
#grid = st.columns(row_size) | |
#col = 0 | |
Generate_pred = st.button("Generate Prediction") | |
if Generate_pred: | |
for file in uploaded_file: | |
# with grid[col]: | |
# img = Image.open(file) | |
# st.image(img) | |
#col += 1 | |
img = Image.open(file) | |
img_array = img_to_array(img) | |
img_array = tf.expand_dims(img_array, axis = 0) # Create a batch | |
processed_image = preprocess_input(img_array) | |
predictions = model.predict(processed_image) | |
score = predictions[0] | |
st.markdown("Predicted class of the image {} is : {}".format(file, class_names[np.argmax(score)])) |