lily-hust commited on
Commit
f51433c
·
1 Parent(s): b3a87cf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -11
app.py CHANGED
@@ -9,7 +9,11 @@ from tensorflow.keras.preprocessing.image import img_to_array
9
  st.title('Jacaranda Identification')
10
  st.markdown('A Deep learning application to identify if a satellite image clip contains Jacaranda trees. The predicting result will be "Jacaranda", or "Others".')
11
 
12
- uploaded_file = st.file_uploader("Upload an image file", type="jpg")
 
 
 
 
13
 
14
  img_height = 224
15
  img_width = 224
@@ -18,15 +22,22 @@ class_names = ['Jacaranda', 'Others']
18
  model = tf.keras.models.load_model('model')
19
 
20
  if uploaded_file is not None:
21
- img = Image.open(uploaded_file)
22
- st.image(img)
23
-
24
- img_array = img_to_array(img)
25
- img_array = tf.expand_dims(img_array, axis = 0) # Create a batch
26
- processed_image = preprocess_input(img_array)
27
-
28
  Generate_pred = st.button("Generate Prediction")
29
  if Generate_pred:
30
- predictions = model.predict(processed_image)
31
- score = predictions[0]
32
- st.markdown("Predicted class of the image is : {}".format(class_names[np.argmax(score)]))
 
 
 
 
 
 
 
 
 
 
 
9
  st.title('Jacaranda Identification')
10
  st.markdown('A Deep learning application to identify if a satellite image clip contains Jacaranda trees. The predicting result will be "Jacaranda", or "Others".')
11
 
12
+ uploaded_file = st.file_uploader("Upload image files", type="jpg", accept_multiple_files=True)
13
+
14
+ image_iterator = paginator("Select a page", uploaded_file)
15
+ indices_on_page, images_on_page = map(list, zip(*image_iterator))
16
+ st.image(images_on_page, width=100, caption=indices_on_page)
17
 
18
  img_height = 224
19
  img_width = 224
 
22
  model = tf.keras.models.load_model('model')
23
 
24
  if uploaded_file is not None:
25
+ #n = len(uploaded_file)
26
+ #row_size = 5
27
+ #grid = st.columns(row_size)
28
+ #col = 0
 
 
 
29
  Generate_pred = st.button("Generate Prediction")
30
  if Generate_pred:
31
+ for file in uploaded_file:
32
+ # with grid[col]:
33
+ # img = Image.open(file)
34
+ # st.image(img)
35
+ #col += 1
36
+ img = Image.open(file)
37
+ img_array = img_to_array(img)
38
+ img_array = tf.expand_dims(img_array, axis = 0) # Create a batch
39
+ processed_image = preprocess_input(img_array)
40
+
41
+ predictions = model.predict(processed_image)
42
+ score = predictions[0]
43
+ st.markdown("Predicted class of the image {} is : {}".format(file, class_names[np.argmax(score)]))