Spaces:
Build error
Build error
File size: 6,171 Bytes
dac5204 3b538c3 86cfbfc 3b538c3 b90e510 dac5204 3b538c3 fda45a4 3b538c3 fda45a4 3b538c3 fda45a4 3b538c3 164bf10 b90e510 fda45a4 b90e510 3b538c3 ae32d37 7864b80 37f3329 b721670 eb4fba4 8d2a3b9 fa132d6 9718b0e c624f0d b721670 f934fb5 b721670 f934fb5 b90e510 fa132d6 b721670 92a0a4b 37f3329 92a0a4b b90e510 e6fae38 cddb36c 37f3329 cddb36c f934fb5 cddb36c fa132d6 f934fb5 b721670 eb4fba4 b721670 daf6d51 1e727da 4d8d96a 1e727da 7fb89c6 b721670 37f3329 67283e0 4f9dc3a daf6d51 23a6ca9 daf6d51 23a6ca9 daf6d51 37f3329 23a6ca9 37f3329 d62f529 23a6ca9 b721670 37f3329 9718b0e 37f3329 cef65f9 37f3329 daf6d51 23a6ca9 37f3329 b721670 cddb36c f934fb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import os
import gradio as gr
import pandas as pd
from functools import partial
from ai_classroom_suite.UIBaseComponents import *
# Testing purpose
class EchoingTutor(SlightlyDelusionalTutor):
def add_user_message(self, user_message):
self.conversation_memory.append([user_message, None])
self.flattened_conversation = self.flattened_conversation + '\n\n' + 'User: ' + user_message
def get_tutor_reply(self, user_message):
# get tutor message
tutor_message = "You said: " + user_message
# add tutor message to conversation memory
self.conversation_memory[-1][1] = tutor_message
self.flattened_conversation = self.flattened_conversation + '\nAI: ' + tutor_message
def forget_conversation(self):
self.conversation_memory = []
self.flattened_conversation = ''
### Chatbot Functions ###
def add_user_message(user_message, chat_tutor):
chat_tutor.add_user_message(user_message)
return chat_tutor.conversation_memory, chat_tutor
"""
def get_tutor_reply(user_message, chat_tutor):
chat_tutor.get_tutor_reply(user_message)
return gr.update(value="", interactive=True), chat_tutor.conversation_memory, chat_tutor
"""
def get_tutor_reply(chat_tutor):
chat_tutor.get_tutor_reply(input_kwargs={'question':''})
return gr.update(value="", interactive=True), chat_tutor.conversation_memory, chat_tutor
def get_conversation_history(chat_tutor):
return chat_tutor.conversation_memory, chat_tutor
### Instructor Interface Helper Functions ###
def get_instructor_prompt(fileobj):
file_path = fileobj.name
f = open(file_path, "r")
instructor_prompt = f.read()
return instructor_prompt
def embed_prompt(instructor_prompt):
os.environ["SECRET_PROMPT"] = instructor_prompt
return os.environ.get("SECRET_PROMPT")
### User Interfaces ###
with gr.Blocks() as demo:
#initialize tutor (with state)
study_tutor = gr.State(SlightlyDelusionalTutor())
# Student interface
with gr.Tab("For Students"):
# Chatbot interface
gr.Markdown("""
## Chat with the Model
Description here
""")
with gr.Row(equal_height=True):
with gr.Column(scale=2):
chatbot = gr.Chatbot()
with gr.Row():
user_chat_input = gr.Textbox(label="User input", scale=9)
user_chat_submit = gr.Button("Ask/answer model", scale=1)
user_chat_submit.click(
add_user_message,
[user_chat_input, study_tutor],
[chatbot, study_tutor],
queue=False
).then(
get_tutor_reply,
[study_tutor],
[user_chat_input, chatbot, study_tutor],
queue=True)
# Testing purpose
test_btn = gr.Button("View your chat history")
chat_history = gr.JSON(label = "conversation history")
test_btn.click(get_conversation_history, inputs=[study_tutor], outputs=[chat_history, study_tutor])
# Download conversation history file
with gr.Blocks():
gr.Markdown("""
## Export Your Chat History
Export your chat history as a .json, .txt, or .csv file
""")
with gr.Row():
export_dialogue_button_json = gr.Button("JSON")
export_dialogue_button_txt = gr.Button("TXT")
export_dialogue_button_csv = gr.Button("CSV")
file_download = gr.Files(label="Download here", file_types=['.json', '.txt', '.csv'], type="file", visible=False)
export_dialogue_button_json.click(save_json, study_tutor, file_download, show_progress=True)
export_dialogue_button_txt.click(save_txt, study_tutor, file_download, show_progress=True)
export_dialogue_button_csv.click(save_csv, study_tutor, file_download, show_progress=True)
# Instructor interface
with gr.Tab("Instructor Only"):
# API Authentication functionality
# Instead of ask students to provide key, the key is now provided by the instructor
"""
To permanently set the key, go to Settings -> Variables and secrets -> Secrets,
then replace OPENAI_API_KEY value with whatever openai key of the instructor.
"""
api_input = gr.Textbox(show_label=False, type="password", visible=False, value=os.environ.get("OPENAI_API_KEY"))
# Upload secret prompt functionality
# The instructor will provide a secret prompt/persona to the tutor
with gr.Blocks():
# testing purpose, change visible to False at deployment
test_secret = gr.Textbox(label="Current secret prompt", value=os.environ.get("SECRET_PROMPT"), visible=True)
# Just placeholders components
text_input = gr.TextArea(visible=False)
file_input = gr.File(visible=False)
instructor_input = gr.TextArea(visible=False)
learning_objectives = gr.Textbox(visible=False)
# Upload secret file
instructor_file_upload = gr.File(
label="Load a .txt or .py file", file_types=['.py', '.txt'], type="file", elem_classes="short-height")
# Verify prompt content
instructor_prompt = gr.Textbox(label="Verify your prompt content", visible=True)
instructor_file_upload.upload(fn=get_instructor_prompt, inputs=file_input, outputs=instructor_prompt)
# Set the secret prompt in this session and embed it to the study tutor
prompt_submit_btn = gr.Button("Submit")
prompt_submit_btn.click(
fn=embed_prompt, inputs=[instructor_prompt], outputs=[test_secret]
).then(
fn=create_reference_store,
inputs=[study_tutor, prompt_submit_btn, instructor_prompt, file_input, instructor_input, api_input, learning_objectives],
outputs=[study_tutor, prompt_submit_btn]
)
# TODO: may need a way to set the secret prompt permanently in settings/secret
demo.queue().launch(server_name='0.0.0.0', server_port=7860) |