Spaces:
Build error
Build error
import os | |
import gradio as gr | |
import pandas as pd | |
from functools import partial | |
from ai_classroom_suite.UIBaseComponents import * | |
# Testing purpose | |
class EchoingTutor(SlightlyDelusionalTutor): | |
def add_user_message(self, user_message): | |
self.conversation_memory.append([user_message, None]) | |
self.flattened_conversation = self.flattened_conversation + '\n\n' + 'User: ' + user_message | |
def get_tutor_reply(self, user_message): | |
# get tutor message | |
tutor_message = "You said: " + user_message | |
# add tutor message to conversation memory | |
self.conversation_memory[-1][1] = tutor_message | |
self.flattened_conversation = self.flattened_conversation + '\nAI: ' + tutor_message | |
def forget_conversation(self): | |
self.conversation_memory = [] | |
self.flattened_conversation = '' | |
### Chatbot Functions ### | |
def add_user_message(user_message, chat_tutor): | |
chat_tutor.add_user_message(user_message) | |
return chat_tutor.conversation_memory, chat_tutor | |
""" | |
def get_tutor_reply(user_message, chat_tutor): | |
chat_tutor.get_tutor_reply(user_message) | |
return gr.update(value="", interactive=True), chat_tutor.conversation_memory, chat_tutor | |
""" | |
def get_tutor_reply(chat_tutor): | |
chat_tutor.get_tutor_reply(input_kwargs={'question':''}) | |
return gr.update(value="", interactive=True), chat_tutor.conversation_memory, chat_tutor | |
def get_conversation_history(chat_tutor): | |
return chat_tutor.conversation_memory, chat_tutor | |
def create_prompt_store(chat_tutor, vs_button, upload_files, openai_auth): | |
text_segs = [] | |
upload_segs = [] | |
if upload_files: | |
print(upload_files) | |
upload_fnames = [f.name for f in upload_files] | |
upload_segs = get_document_segments(upload_fnames, 'file', chunk_size=700, chunk_overlap=100) | |
# get the full list of everything | |
all_segs = text_segs + upload_segs | |
print(all_segs) | |
# create the vector store and update tutor | |
vs_db, vs_retriever = create_local_vector_store(all_segs, search_kwargs={"k": 2}) | |
chat_tutor.vector_store = vs_db | |
chat_tutor.vs_retriever = vs_retriever | |
# create the tutor chain | |
if not chat_tutor.api_key_valid or not chat_tutor.openai_auth: | |
chat_tutor = embed_key(openai_auth, chat_tutor) | |
qa_chain = create_tutor_mdl_chain(kind="retrieval_qa", mdl=chat_tutor.chat_llm, retriever = chat_tutor.vs_retriever, return_source_documents=True) | |
chat_tutor.tutor_chain = qa_chain | |
# return the store | |
return chat_tutor, gr.update(interactive=True, value='Tutor Initialized!') | |
### Instructor Interface Helper Functions ### | |
def get_instructor_prompt(fileobj): | |
file_path = fileobj.name | |
f = open(file_path, "r") | |
instructor_prompt = f.read() | |
return instructor_prompt | |
def embed_prompt(instructor_prompt): | |
os.environ["SECRET_PROMPT"] = instructor_prompt | |
return os.environ.get("SECRET_PROMPT") | |
### User Interfaces ### | |
with gr.Blocks() as demo: | |
#initialize tutor (with state) | |
study_tutor = gr.State(SlightlyDelusionalTutor()) | |
# Student interface | |
with gr.Tab("For Students"): | |
# Chatbot interface | |
gr.Markdown(""" | |
## Chat with the Model | |
Description here | |
""") | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=2): | |
chatbot = gr.Chatbot() | |
with gr.Row(): | |
user_chat_input = gr.Textbox(label="User input", scale=9) | |
user_chat_submit = gr.Button("Ask/answer model", scale=1) | |
user_chat_submit.click( | |
add_user_message, | |
[user_chat_input, study_tutor], | |
[chatbot, study_tutor], | |
queue=False | |
).then( | |
get_tutor_reply, | |
[study_tutor], | |
[user_chat_input, chatbot, study_tutor], | |
queue=True) | |
# Testing purpose | |
test_btn = gr.Button("View your chat history") | |
chat_history = gr.JSON(label = "conversation history") | |
test_btn.click(get_conversation_history, inputs=[study_tutor], outputs=[chat_history, study_tutor]) | |
# Download conversation history file | |
with gr.Blocks(): | |
gr.Markdown(""" | |
## Export Your Chat History | |
Export your chat history as a .json, .txt, or .csv file | |
""") | |
with gr.Row(): | |
export_dialogue_button_json = gr.Button("JSON") | |
export_dialogue_button_txt = gr.Button("TXT") | |
export_dialogue_button_csv = gr.Button("CSV") | |
file_download = gr.Files(label="Download here", file_types=['.json', '.txt', '.csv'], type="file", visible=False) | |
export_dialogue_button_json.click(save_json, study_tutor, file_download, show_progress=True) | |
export_dialogue_button_txt.click(save_txt, study_tutor, file_download, show_progress=True) | |
export_dialogue_button_csv.click(save_csv, study_tutor, file_download, show_progress=True) | |
# Instructor interface | |
with gr.Tab("Instructor Only"): | |
# API Authentication functionality | |
# Instead of ask students to provide key, the key is now provided by the instructor | |
with gr.Box(): | |
gr.Markdown("### OpenAI API Key ") | |
gr.HTML("""<span>Embed your OpenAI API key below; if you haven't created one already, visit | |
<a href="https://platform.openai.com/account/api-keys">platform.openai.com/account/api-keys</a> | |
to sign up for an account and get your personal API key</span>""", | |
elem_classes="textbox_label") | |
api_input = gr.Textbox(show_label=False, type="password", container=False, autofocus=True, | |
placeholder="βββββββββββββββββ", value='') | |
api_input.submit(fn=embed_key, inputs=[api_input, study_tutor], outputs=study_tutor) | |
api_input.blur(fn=embed_key, inputs=[api_input, study_tutor], outputs=study_tutor) | |
""" | |
Another way to permanently set the key is to directly go to | |
Settings -> Variables and secrets -> Secrets | |
Then replace OPENAI_API_KEY value with whatever openai key of the instructor. | |
""" | |
# api_input = os.environ.get("OPENAI_API_KEY") | |
# embed_key(api_input, study_tutor) | |
# Upload secret prompt functionality | |
# The instructor will provide a secret prompt/persona to the tutor | |
with gr.Blocks(): | |
# testing purpose, change visible to False at deployment | |
test_secret = gr.Textbox(label="Current secret prompt", value=os.environ.get("SECRET_PROMPT"), visible=True) | |
file_input = gr.File(label="Load a .txt or .py file", | |
file_types=['.py', '.txt'], type="file", | |
elem_classes="short-height") | |
# Verify prompt content | |
instructor_prompt = gr.Textbox(label="Verify your prompt content", visible=True) | |
file_input.upload(fn=get_instructor_prompt, inputs=file_input, outputs=instructor_prompt) | |
# Set the secret prompt in this session and embed it to the study tutor | |
prompt_submit_btn = gr.Button("Submit") | |
prompt_submit_btn.click( | |
fn=embed_prompt, inputs=instructor_prompt, outputs=test_secret | |
).then( | |
fn=create_prompt_store, | |
inputs=[study_tutor, prompt_submit_btn, file_input, api_input], | |
outputs=[study_tutor, prompt_submit_btn] | |
) | |
# TODO: may need a way to set the secret prompt permanently in settings/secret | |
demo.queue().launch(server_name='0.0.0.0', server_port=7860) |