brunhild217's picture
Update app.py
940cc74
import os
import gradio as gr
import pandas as pd
from functools import partial
from ai_classroom_suite.UIBaseComponents import *
### User Interface Chatbot Functions ###
def get_tutor_reply(chat_tutor):
chat_tutor.get_tutor_reply()
return gr.update(value="", interactive=True), chat_tutor.conversation_memory, chat_tutor
def get_conversation_history(chat_tutor):
return chat_tutor.conversation_memory, chat_tutor
### Instructor Interface Helper Functions ###
def get_instructor_prompt(fileobj):
# get file path
file_path = fileobj.name
with open(file_path, "r") as f:
instructor_prompt = f.read()
return instructor_prompt
def embed_prompt(prompt, chat_tutor):
# update secret
os.environ["SECRET_PROMPT"] = prompt
# update tutor
chat_tutor.learning_objectives = prompt
return os.environ.get("SECRET_PROMPT"), chat_tutor
### User Interfaces ###
with gr.Blocks() as demo:
#initialize tutor (with state)
study_tutor = gr.State(SlightlyDelusionalTutor())
# Student interface
with gr.Tab("For Students"):
# Chatbot interface
gr.Markdown("""
## Chat with the Model
Description here
""")
with gr.Row(equal_height=True):
with gr.Column(scale=2):
chatbot = gr.Chatbot()
with gr.Row():
user_chat_input = gr.Textbox(label="User input", scale=9)
user_chat_submit = gr.Button("Ask/answer model", scale=1)
# First add user's message to the conversation history
# Then get reply from the tutor and add that to the conversation history
user_chat_submit.click(
fn = add_user_message, inputs = [user_chat_input, study_tutor], outputs = [user_chat_input, chatbot, study_tutor], queue=False
).then(
fn = get_tutor_reply, inputs = [study_tutor], outputs = [user_chat_input, chatbot, study_tutor], queue=True
)
# Testing the chat history storage, can be deleted at deployment
with gr.Blocks():
test_btn = gr.Button("View your chat history")
chat_history = gr.JSON(label = "conversation history")
test_btn.click(get_conversation_history, inputs=[study_tutor], outputs=[chat_history, study_tutor])
# Download conversation history file
with gr.Blocks():
gr.Markdown("""
## Export Your Chat History
Export your chat history as a .json, .txt, or .csv file
""")
with gr.Row():
export_dialogue_button_json = gr.Button("JSON")
export_dialogue_button_txt = gr.Button("TXT")
export_dialogue_button_csv = gr.Button("CSV")
file_download = gr.Files(label="Download here", file_types=['.json', '.txt', '.csv'], type="file", visible=False)
export_dialogue_button_json.click(save_json, study_tutor, file_download, show_progress=True)
export_dialogue_button_txt.click(save_txt, study_tutor, file_download, show_progress=True)
export_dialogue_button_csv.click(save_csv, study_tutor, file_download, show_progress=True)
# Instructor interface
with gr.Tab("Instructor Only"):
"""
API Authentication functionality
Instead of ask students to provide key, the key is now provided by the instructor.
To permanently set the key, go to Settings -> Variables and secrets -> Secrets,
then replace OPENAI_API_KEY value with whatever openai key of the instructor.
"""
api_input = gr.Textbox(show_label=False, type="password", visible=False, value=os.environ.get("OPENAI_API_KEY"))
# Upload secret prompt functionality
# The instructor will provide a secret prompt/persona to the tutor
with gr.Blocks():
# testing purpose, change visible to False at deployment
view_secret = gr.Textbox(label="Current secret prompt", value=os.environ.get("SECRET_PROMPT"), visible=False)
# Prompt instructor to upload the secret file
file_input = gr.File(label="Load a .txt or .py file", file_types=['.py', '.txt'], type="file", elem_classes="short-height")
# Verify prompt content
instructor_prompt = gr.Textbox(label="Verify your prompt content", visible=True)
file_input.upload(fn=get_instructor_prompt, inputs=file_input, outputs=instructor_prompt)
# Placeholders components
text_input_none = gr.Textbox(visible=False)
file_input_none = gr.File(visible=False)
instructor_input_none = gr.TextArea(visible=False)
learning_objectives_none = gr.Textbox(visible=False)
# Set the secret prompt in this session and embed it to the study tutor
prompt_submit_btn = gr.Button("Submit")
prompt_submit_btn.click(
fn=embed_prompt, inputs=[instructor_prompt, study_tutor], outputs=[view_secret, study_tutor]
).then(
fn=create_reference_store,
inputs=[study_tutor, prompt_submit_btn, instructor_prompt, file_input_none, instructor_input_none, api_input, instructor_prompt],
outputs=[study_tutor, prompt_submit_btn]
)
# TODO: The instructor prompt is now only set in session if not go to Settings/secret,
# to "permanently" set the secret prompt not seen by the students who use this space,
# one possible way is to recreate the instructor interface in another space,
# and load it here to chain with the student interface
# TODO: Currently, the instructor prompt is handled as text input and stored in the vector store (and in the learning objective),
# which means the tutor now is still a question-answering tutor who viewed the prompt as context (but not really acting based on it).
# We need to find a way to provide the prompt directly to the model and set its status.
demo.queue().launch(server_name='0.0.0.0', server_port=7860)