import os import gradio as gr import pandas as pd from functools import partial from ai_classroom_suite.UIBaseComponents import * ### User Interface Chatbot Functions ### def get_tutor_reply(chat_tutor): chat_tutor.get_tutor_reply() return gr.update(value="", interactive=True), chat_tutor.conversation_memory, chat_tutor def get_conversation_history(chat_tutor): return chat_tutor.conversation_memory, chat_tutor ### Instructor Interface Helper Functions ### def get_instructor_prompt(fileobj): file_path = fileobj.name f = open(file_path, "r") instructor_prompt = f.read() return instructor_prompt def embed_prompt(instructor_prompt): os.environ["SECRET_PROMPT"] = instructor_prompt return os.environ.get("SECRET_PROMPT") ### User Interfaces ### with gr.Blocks() as demo: #initialize tutor (with state) study_tutor = gr.State(SlightlyDelusionalTutor()) # Student interface with gr.Tab("For Students"): # Chatbot interface gr.Markdown(""" ## Chat with the Model Description here """) with gr.Row(equal_height=True): with gr.Column(scale=2): chatbot = gr.Chatbot() with gr.Row(): user_chat_input = gr.Textbox(label="User input", scale=9) user_chat_submit = gr.Button("Ask/answer model", scale=1) # First add user's message to the conversation history # Then get reply from the tutor and add that to the conversation history user_chat_submit.click( fn = add_user_message, inputs = [user_chat_input, study_tutor], outputs = [user_chat_input, chatbot, study_tutor], queue=False ).then( fn = get_tutor_reply, inputs = [study_tutor], outputs = [user_chat_input, chatbot, study_tutor], queue=True ) # Testing the chat history storage, can be deleted at deployment test_btn = gr.Button("View your chat history") chat_history = gr.JSON(label = "conversation history") test_btn.click(get_conversation_history, inputs=[study_tutor], outputs=[chat_history, study_tutor]) # Download conversation history file with gr.Blocks(): gr.Markdown(""" ## Export Your Chat History Export your chat history as a .json, .txt, or .csv file """) with gr.Row(): export_dialogue_button_json = gr.Button("JSON") export_dialogue_button_txt = gr.Button("TXT") export_dialogue_button_csv = gr.Button("CSV") file_download = gr.Files(label="Download here", file_types=['.json', '.txt', '.csv'], type="file", visible=False) export_dialogue_button_json.click(save_json, study_tutor, file_download, show_progress=True) export_dialogue_button_txt.click(save_txt, study_tutor, file_download, show_progress=True) export_dialogue_button_csv.click(save_csv, study_tutor, file_download, show_progress=True) # Instructor interface with gr.Tab("Instructor Only"): """ API Authentication functionality Instead of ask students to provide key, the key is now provided by the instructor. To permanently set the key, go to Settings -> Variables and secrets -> Secrets, then replace OPENAI_API_KEY value with whatever openai key of the instructor. """ api_input = gr.Textbox(show_label=False, type="password", visible=False, value=os.environ.get("OPENAI_API_KEY")) # Upload secret prompt functionality # The instructor will provide a secret prompt/persona to the tutor with gr.Blocks(): # testing purpose, change visible to False at deployment view_secret = gr.Textbox(label="Current secret prompt", value=os.environ.get("SECRET_PROMPT"), visible=False) # Prompt instructor to upload the secret file file_input = gr.File(label="Load a .txt or .py file", file_types=['.py', '.txt'], type="file", elem_classes="short-height") # Verify prompt content instructor_prompt = gr.Textbox(label="Verify your prompt content", visible=True) file_input.upload(fn=get_instructor_prompt, inputs=file_input, outputs=instructor_prompt) # Placeholders components text_input_none = gr.Textbox(visible=False) file_input_none = gr.File(visible=False) instructor_input_none = gr.TextArea(visible=False) learning_objectives_none = gr.Textbox(visible=False) # Set the secret prompt in this session and embed it to the study tutor prompt_submit_btn = gr.Button("Submit") prompt_submit_btn.click( fn=embed_prompt, inputs=[instructor_prompt], outputs=[view_secret] ).then( fn=create_reference_store, inputs=[study_tutor, prompt_submit_btn, instructor_prompt, file_input_none, instructor_input_none, api_input, instructor_prompt], outputs=[study_tutor, prompt_submit_btn] ) # TODO: The instructor prompt is now only set in session if not go to Settings/secret, # to "permanently" set the secret prompt not seen by the students who use this space, # one possible way is to recreate the instructor interface in another space, # and load it here to chain with the student interface # TODO: Currently, the instructor prompt is handled as text input and stored in the vector store (and in the learning objective), # which means the tutor now is still a question-answering tutor who viewed the prompt as context input. # We need to find a way to provide the prompt directly to the model and set its status. demo.queue().launch(server_name='0.0.0.0', server_port=7860)