Spaces:
Sleeping
Sleeping
File size: 1,858 Bytes
4200710 9b6e058 4e30cee 9b6e058 b1ebbbc 9b6e058 4e30cee 9b6e058 4e30cee b1ebbbc 4200710 0369ce7 4e30cee 9b6e058 4e30cee 0369ce7 4e30cee 0369ce7 4200710 0369ce7 4e30cee 4200710 4e30cee 4200710 0369ce7 4e30cee 0369ce7 4e30cee 4200710 4e30cee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import gradio as gr
import openai
import openai_secret_manager
# Function to get the secret values
def get_secrets():
secrets = openai_secret_manager.get_secret("INSTRUCTOR_API_KEY")
instructor_prompt = openai_secret_manager.get_secret("INSTRUCTOR_PROMPT")
return secrets, instructor_prompt
# Get the secrets
secrets, instructor_prompt = get_secrets()
# Set your API key
api_key = secrets["INSTRUCTOR_API_KEY"]
with gr.Blocks() as demo:
chat_history = gr.State(value=[])
def chat_with_instructor(message, history):
import openai
openai.api_key = api_key
chat_input = instructor_prompt + "\nUser: " + message + "\nInstructor:"
response = openai.Completion.create(
engine="text-davinci-002",
prompt=chat_input,
max_tokens=1024 # Adjust this for response length
).choices[0].text.strip()
chat_history.value.append(
{
"user": message,
"instructor": instructor_prompt,
"bot": response,
}
)
return response
def generate_json(chat_history):
return chat_history.value
chatbox = gr.ChatInterface(
fn=chat_with_instructor,
title="Chat with Instructor",
description="Chat with the instructor using a predefined prompt.",
examples=["Hi, can you help me with this?"],
submit_btn="Send",
stop_btn="Stop",
retry_btn="Retry",
undo_btn="Undo last message",
clear_btn="Start a new conversation"
).queue()
chat_history_json = gr.JSON(generate_json(chat_history))
gr.Markdown("### 📩 Generate the JSON file for your chat history!")
gr.Interface(fn=generate_json,
inputs=None,
outputs=[chat_history_json])
demo.queue()
demo.launch()
|