Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,16 @@ import pandas as pd
|
|
7 |
from tqdm import tqdm
|
8 |
import urllib
|
9 |
from bs4 import BeautifulSoup
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Configure logging to write messages to a file
|
12 |
logging.basicConfig(filename='app.log', level=logging.ERROR)
|
13 |
|
@@ -24,82 +33,141 @@ peft_model_name = "unsloth/mistral-7b-instruct-v0.3-bnb-4bit"
|
|
24 |
model = None
|
25 |
tokenizer = None
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
'
|
34 |
-
'
|
35 |
-
'
|
36 |
-
'
|
37 |
-
'
|
38 |
-
'
|
39 |
-
'
|
|
|
|
|
|
|
40 |
}
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
results = []
|
98 |
-
for
|
99 |
-
|
100 |
-
results.append(result)
|
101 |
return results
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
@spaces.GPU()
|
105 |
def classify_website(url):
|
@@ -118,30 +186,79 @@ def classify_website(url):
|
|
118 |
)
|
119 |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
120 |
|
121 |
-
|
122 |
urls = [url]
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
# Convert results to DataFrame
|
126 |
-
df_result_train_more = pd.DataFrame(results_shop)
|
127 |
-
text = df_result_train_more['text'][0]
|
128 |
-
translated = GoogleTranslator(source='auto', target='en').translate(text[:4990])
|
129 |
|
130 |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
131 |
|
132 |
-
|
133 |
-
|
134 |
|
135 |
-
|
136 |
-
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
-
outputs = model.generate(inputs.input_ids, max_new_tokens=64, use_cache=True)
|
145 |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
146 |
final_answer = summary.split("### Response:")[1].strip()
|
147 |
return final_answer
|
@@ -158,217 +275,3 @@ iface = gr.Interface(
|
|
158 |
# Launch the interface
|
159 |
iface.launch()
|
160 |
|
161 |
-
|
162 |
-
# import gradio as gr
|
163 |
-
# import asyncio
|
164 |
-
# import requests
|
165 |
-
# from bs4 import BeautifulSoup
|
166 |
-
# import pandas as pd
|
167 |
-
# from tqdm import tqdm
|
168 |
-
# import urllib
|
169 |
-
# from deep_translator import GoogleTranslator
|
170 |
-
# import spaces
|
171 |
-
|
172 |
-
|
173 |
-
# # from unsloth import FastLanguageModel
|
174 |
-
# import torch
|
175 |
-
# import re
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
# # Define helper functions
|
180 |
-
# async def fetch_data(url):
|
181 |
-
# headers = {
|
182 |
-
# 'Accept': '*/*',
|
183 |
-
# 'Accept-Language': 'ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7',
|
184 |
-
# 'Connection': 'keep-alive',
|
185 |
-
# 'Referer': f'{url}',
|
186 |
-
# 'Sec-Fetch-Dest': 'empty',
|
187 |
-
# 'Sec-Fetch-Mode': 'cors',
|
188 |
-
# 'Sec-Fetch-Site': 'cross-site',
|
189 |
-
# 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36',
|
190 |
-
# 'sec-ch-ua': '"Google Chrome";v="125", "Chromium";v="125", "Not.A/Brand";v="24"',
|
191 |
-
# 'sec-ch-ua-mobile': '?0',
|
192 |
-
# 'sec-ch-ua-platform': '"macOS"',
|
193 |
-
# }
|
194 |
-
|
195 |
-
# encoding = 'utf-8'
|
196 |
-
# timeout = 10
|
197 |
-
|
198 |
-
# try:
|
199 |
-
# def get_content():
|
200 |
-
# req = urllib.request.Request(url, headers=headers)
|
201 |
-
# with urllib.request.urlopen(req, timeout=timeout) as response:
|
202 |
-
# return response.read()
|
203 |
-
|
204 |
-
# response_content = await asyncio.get_event_loop().run_in_executor(None, get_content)
|
205 |
-
|
206 |
-
# soup = BeautifulSoup(response_content, 'html.parser', from_encoding=encoding)
|
207 |
-
|
208 |
-
# title = soup.find('title').text
|
209 |
-
# description = soup.find('meta', attrs={'name': 'description'})
|
210 |
-
# if description and "content" in description.attrs:
|
211 |
-
# description = description.get("content")
|
212 |
-
# else:
|
213 |
-
# description = ""
|
214 |
-
|
215 |
-
# keywords = soup.find('meta', attrs={'name': 'keywords'})
|
216 |
-
# if keywords and "content" in keywords.attrs:
|
217 |
-
# keywords = keywords.get("content")
|
218 |
-
# else:
|
219 |
-
# keywords = ""
|
220 |
-
|
221 |
-
# h1_all = " ".join(h.text for h in soup.find_all('h1'))
|
222 |
-
# h2_all = " ".join(h.text for h in soup.find_all('h2'))
|
223 |
-
# h3_all = " ".join(h.text for h in soup.find_all('h3'))
|
224 |
-
# paragraphs_all = " ".join(p.text for p in soup.find_all('p'))
|
225 |
-
|
226 |
-
# allthecontent = f"{title} {description} {h1_all} {h2_all} {h3_all} {paragraphs_all}"
|
227 |
-
# allthecontent = allthecontent[:4999]
|
228 |
-
|
229 |
-
# return {
|
230 |
-
# 'url': url,
|
231 |
-
# 'title': title,
|
232 |
-
# 'description': description,
|
233 |
-
# 'keywords': keywords,
|
234 |
-
# 'h1': h1_all,
|
235 |
-
# 'h2': h2_all,
|
236 |
-
# 'h3': h3_all,
|
237 |
-
# 'paragraphs': paragraphs_all,
|
238 |
-
# 'text': allthecontent
|
239 |
-
# }
|
240 |
-
# except Exception as e:
|
241 |
-
# return {
|
242 |
-
# 'url': url,
|
243 |
-
# 'title': None,
|
244 |
-
# 'description': None,
|
245 |
-
# 'keywords': None,
|
246 |
-
# 'h1': None,
|
247 |
-
# 'h2': None,
|
248 |
-
# 'h3': None,
|
249 |
-
# 'paragraphs': None,
|
250 |
-
# 'text': None
|
251 |
-
# }
|
252 |
-
|
253 |
-
# def concatenate_text(data):
|
254 |
-
# text_parts = [str(data[col]) for col in ['url', 'title', 'description', 'keywords', 'h1', 'h2', 'h3'] if data[col]]
|
255 |
-
# text = ' '.join(text_parts)
|
256 |
-
# text = text.replace(r'\xa0', ' ').replace('\n', ' ').replace('\t', ' ')
|
257 |
-
# text = re.sub(r'\s{2,}', ' ', text)
|
258 |
-
# return text
|
259 |
-
|
260 |
-
# def translate_text(text):
|
261 |
-
# try:
|
262 |
-
# text = text[:4990]
|
263 |
-
# translated_text = GoogleTranslator(source='auto', target='en').translate(text)
|
264 |
-
# return translated_text
|
265 |
-
# except Exception as e:
|
266 |
-
# print(f"An error occurred during translation: {e}")
|
267 |
-
# return None
|
268 |
-
|
269 |
-
|
270 |
-
# model_name = "unsloth/mistral-7b-instruct-v0.3-bnb-4bit"
|
271 |
-
|
272 |
-
# # Initialize model and tokenizer variables
|
273 |
-
# model = None
|
274 |
-
# tokenizer = None
|
275 |
-
|
276 |
-
# @spaces.GPU()
|
277 |
-
# def summarize_url(url):
|
278 |
-
|
279 |
-
# global model, tokenizer # Declare model and tokenizer as global variables
|
280 |
-
|
281 |
-
# # Load the model
|
282 |
-
# max_seq_length = 2048
|
283 |
-
# dtype = None
|
284 |
-
# load_in_4bit = True
|
285 |
-
|
286 |
-
# if model is None or tokenizer is None:
|
287 |
-
# from unsloth import FastLanguageModel
|
288 |
-
|
289 |
-
# # Load the model and tokenizer
|
290 |
-
# model, tokenizer = FastLanguageModel.from_pretrained(
|
291 |
-
# model_name=model_name, # YOUR MODEL YOU USED FOR TRAINING
|
292 |
-
# max_seq_length=max_seq_length,
|
293 |
-
# dtype=dtype,
|
294 |
-
# load_in_4bit=load_in_4bit,
|
295 |
-
# )
|
296 |
-
# FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
297 |
-
|
298 |
-
|
299 |
-
# result = asyncio.run(fetch_data(url))
|
300 |
-
# text = concatenate_text(result)
|
301 |
-
# translated_text = translate_text(text)
|
302 |
-
# if len(translated_text) < 100:
|
303 |
-
# return 'not scraped or short text'
|
304 |
-
# alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
305 |
-
|
306 |
-
# ### Instruction:
|
307 |
-
# Describe the website text into one word topic:
|
308 |
-
|
309 |
-
# ### Input:
|
310 |
-
# {}
|
311 |
-
|
312 |
-
# ### Response:
|
313 |
-
# """
|
314 |
-
|
315 |
-
# prompt = alpaca_prompt.format(translated_text)
|
316 |
-
# inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
317 |
-
|
318 |
-
# outputs = model.generate(inputs.input_ids, max_new_tokens=64, use_cache=True)
|
319 |
-
# summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
320 |
-
# final_answer = summary.split("### Response:")[1].strip()
|
321 |
-
# return final_answer
|
322 |
-
|
323 |
-
|
324 |
-
# # # Create the Gradio interface within a `Blocks` context, like the working example
|
325 |
-
# # with gr.Blocks() as demo:
|
326 |
-
|
327 |
-
# # # Add title and description to the interface
|
328 |
-
# # gr.HTML("<h1>Website Summary Generator</h1>")
|
329 |
-
# # gr.HTML("<p>Enter a URL to get a one-word topic summary of the website content..</p>")
|
330 |
-
|
331 |
-
# # # Define input and output elements
|
332 |
-
# # with gr.Row():
|
333 |
-
# # prompt = gr.Textbox(label="Enter Website URL", placeholder="https://example.com")
|
334 |
-
# # output_text = gr.Textbox(label="Topic", interactive=False)
|
335 |
-
|
336 |
-
# # # Add the button to trigger the function
|
337 |
-
# # submit = gr.Button("Classify")
|
338 |
-
|
339 |
-
# # # Define the interaction between inputs and outputs
|
340 |
-
# # submit.click(fn=summarize_url, inputs=prompt, outputs=output_text)
|
341 |
-
|
342 |
-
# # # Add the `if __name__ == "__main__":` block to launch the interface
|
343 |
-
# # if __name__ == "__main__":
|
344 |
-
# # demo.launch()
|
345 |
-
|
346 |
-
|
347 |
-
# # with gr as demo:
|
348 |
-
# # # Define Gradio interface
|
349 |
-
# # demo = demo.Interface(
|
350 |
-
# # fn=summarize_url,
|
351 |
-
# # inputs="text",
|
352 |
-
# # outputs="text",
|
353 |
-
# # title="Website Summary Generator",
|
354 |
-
# # description="Enter a URL to get a one-word topic summary of the website content."
|
355 |
-
# # )
|
356 |
-
|
357 |
-
|
358 |
-
# # if __name__ == "__main__":
|
359 |
-
# # demo.launch()
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
# # Create a Gradio interface
|
364 |
-
# iface = gr.Interface(
|
365 |
-
# fn=summarize_url,
|
366 |
-
# inputs="text",
|
367 |
-
# outputs="text",
|
368 |
-
# title="Website Summary Generator",
|
369 |
-
# description="Enter a URL to get a one-word topic summary of the website content."
|
370 |
-
# )
|
371 |
-
|
372 |
-
# # Launch the interface
|
373 |
-
# iface.launch()
|
374 |
-
|
|
|
7 |
from tqdm import tqdm
|
8 |
import urllib
|
9 |
from bs4 import BeautifulSoup
|
10 |
+
import asyncio
|
11 |
|
12 |
+
from curl_cffi.requests import AsyncSession
|
13 |
+
from tqdm.asyncio import tqdm
|
14 |
+
from fake_headers import Headers
|
15 |
+
|
16 |
+
|
17 |
+
# Limit the number of concurrent workers
|
18 |
+
CONCURRENT_WORKERS = 5
|
19 |
+
semaphore = asyncio.Semaphore(CONCURRENT_WORKERS)
|
20 |
# Configure logging to write messages to a file
|
21 |
logging.basicConfig(filename='app.log', level=logging.ERROR)
|
22 |
|
|
|
33 |
model = None
|
34 |
tokenizer = None
|
35 |
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
async def get_page_bs4(url: str, headers):
|
40 |
+
|
41 |
+
wrong_result = {
|
42 |
+
'url': None,
|
43 |
+
'title': None,
|
44 |
+
'description': None,
|
45 |
+
'keywords': None,
|
46 |
+
'h1': None,
|
47 |
+
'h2': None,
|
48 |
+
'h3': None,
|
49 |
+
'paragraphs': None,
|
50 |
+
'text': None,
|
51 |
+
'links': None
|
52 |
}
|
53 |
|
54 |
+
async with semaphore: # Limit concurrency
|
55 |
+
async with AsyncSession() as session:
|
56 |
+
|
57 |
+
wrong_result['url'] = url
|
58 |
+
|
59 |
+
try:
|
60 |
+
response = await session.get(url, headers=headers, impersonate="chrome", timeout=60, verify=False)
|
61 |
+
except:
|
62 |
+
try:
|
63 |
+
response = await session.get(url, impersonate="chrome", timeout=60, verify=False)
|
64 |
+
except:
|
65 |
+
return wrong_result
|
66 |
+
|
67 |
+
if response.status_code != 200:
|
68 |
+
return wrong_result
|
69 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
70 |
+
|
71 |
+
try:
|
72 |
+
title = soup.find('title').text if soup.find('title') else ''
|
73 |
+
except:
|
74 |
+
title = ''
|
75 |
+
try:
|
76 |
+
description = soup.find('meta', attrs={'name': 'description'})
|
77 |
+
description = description.get("content") if description else ''
|
78 |
+
except:
|
79 |
+
description = ''
|
80 |
+
try:
|
81 |
+
keywords = soup.find('meta', attrs={'name': 'keywords'})
|
82 |
+
keywords = keywords.get("content") if keywords else ''
|
83 |
+
except:
|
84 |
+
keywords = ''
|
85 |
+
try:
|
86 |
+
h1 = " ".join(h.text for h in soup.find_all('h1'))
|
87 |
+
except:
|
88 |
+
h1 = ''
|
89 |
+
try:
|
90 |
+
h2 = " ".join(h.text for h in soup.find_all('h2'))
|
91 |
+
except:
|
92 |
+
h2 = ''
|
93 |
+
try:
|
94 |
+
h3 = " ".join(h.text for h in soup.find_all('h3'))
|
95 |
+
except:
|
96 |
+
h3 = ''
|
97 |
+
try:
|
98 |
+
paragraphs = " ".join(p.text for p in soup.find_all('p'))
|
99 |
+
except:
|
100 |
+
paragraphs = ''
|
101 |
+
try:
|
102 |
+
menu_tags = []
|
103 |
+
navs = soup.find_all('nav')
|
104 |
+
uls = soup.find_all('ul')
|
105 |
+
ols = soup.find_all('ol')
|
106 |
+
for tag in navs + uls + ols:
|
107 |
+
menu_tags.extend(tag.find_all('a'))
|
108 |
+
menu_items = [{'text': tag.get_text(strip=True), 'href': tag.get('href')} for tag in menu_tags if tag.get_text(strip=True)]
|
109 |
+
all_menu_texts = ', '.join([item['text'] for item in menu_items])
|
110 |
+
except:
|
111 |
+
all_menu_texts = ''
|
112 |
+
|
113 |
+
# all_content = f"{url} {title} {description} {h1} {h2} {h3} {paragraphs}"[:4999]
|
114 |
+
|
115 |
+
all_content = f" {url} {title} {description} {h1} {h2} {h3} {paragraphs} "[:4999]
|
116 |
+
|
117 |
+
if len(all_content) < 150:
|
118 |
+
all_content = f" {url} {title} {description} {h1} {h2} {h3} {paragraphs} {all_menu_texts}"[:4999]
|
119 |
+
|
120 |
+
|
121 |
+
# all_content = f" {url} {title} {description} {keywords} {h1} {h2} {h3} {paragraphs} "[:4999]
|
122 |
+
|
123 |
+
# all_content = f" url: {url} title: {title} description: {description} keywords: {keywords} h1: {h1} h2: {h2} h3: {h3} p: {paragraphs} links: {all_menu_texts}"[:4999]
|
124 |
+
|
125 |
+
|
126 |
+
result = {
|
127 |
+
'url': url,
|
128 |
+
'title': title,
|
129 |
+
'description': description,
|
130 |
+
'keywords': keywords,
|
131 |
+
'h1': h1,
|
132 |
+
'h2': h2,
|
133 |
+
'h3': h3,
|
134 |
+
'paragraphs': paragraphs,
|
135 |
+
'text': all_content,
|
136 |
+
'links': all_menu_texts
|
137 |
+
}
|
138 |
+
|
139 |
+
return result
|
140 |
+
|
141 |
+
|
142 |
+
async def main(urls_list):
|
143 |
+
|
144 |
+
headers_list = [Headers(browser="chrome", os="win").generate() for _ in range(len(urls_list) // 5 + 1)]
|
145 |
+
tasks = []
|
146 |
+
|
147 |
+
# Assign headers to each task, rotating every 5 URLs
|
148 |
+
for i, url in enumerate(urls_list):
|
149 |
+
headers = headers_list[i // 5] # Rotate headers every 5 URLs
|
150 |
+
tasks.append(get_page_bs4(url, headers))
|
151 |
+
|
152 |
+
# Use tqdm to show progress
|
153 |
results = []
|
154 |
+
for coro in tqdm(asyncio.as_completed(tasks), total=len(tasks)):
|
155 |
+
results.append(await coro)
|
|
|
156 |
return results
|
157 |
|
158 |
+
def scrape_websites(urls_list):
|
159 |
+
|
160 |
+
try:
|
161 |
+
import nest_asyncio
|
162 |
+
nest_asyncio.apply()
|
163 |
+
loop = asyncio.get_event_loop()
|
164 |
+
result_data = loop.run_until_complete(main(urls_list))
|
165 |
+
# print(len(result_data))
|
166 |
+
except RuntimeError:
|
167 |
+
result_data = asyncio.run(main(urls_list))
|
168 |
+
|
169 |
+
return result_data
|
170 |
+
|
171 |
|
172 |
@spaces.GPU()
|
173 |
def classify_website(url):
|
|
|
186 |
)
|
187 |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
188 |
|
189 |
+
|
190 |
urls = [url]
|
191 |
+
|
192 |
+
final_ans_dict = {}
|
193 |
+
print('before scrape_websites')
|
194 |
+
result_data = scrape_websites(urls)
|
195 |
+
|
196 |
+
data = result_data[0]
|
197 |
+
|
198 |
+
url = data['url']
|
199 |
+
text = data['text']
|
200 |
+
|
201 |
+
try:
|
202 |
+
if len(text) < 150:
|
203 |
+
# print('Short ', text)
|
204 |
+
prediction = 'Short'
|
205 |
+
final_ans_dict[url] = prediction
|
206 |
+
except:
|
207 |
+
# print(translated)
|
208 |
+
prediction = 'NotScraped'
|
209 |
+
final_ans_dict[url] = prediction
|
210 |
+
|
211 |
+
translated = translate_text(text)
|
212 |
+
|
213 |
+
# print(translated)
|
214 |
+
try:
|
215 |
+
if len(translated) < 150:
|
216 |
+
# print(translated)
|
217 |
+
pred = 'Short'
|
218 |
+
return pred
|
219 |
+
except:
|
220 |
+
# print(translated)
|
221 |
+
pred = 'NotScraped'
|
222 |
+
return pred
|
223 |
+
|
224 |
+
|
225 |
+
example_input = """https://extensionesdepelo.net/ Hair extensions in Valencia ▶ The best prices for natural hair extensions in Valencia Hair Extensions in Valencia ▶ Professional and Natural ⭐ Hair with more volume and length. Perfect Hair Extensions About us Our works Our salon services Hair extensions Hair removal Reviews of satisfied customers Hair palette colors Contacts Fill out the form Over 7 years of experience in hair extensions, we select the color and texture of hair to match your hair so that the hair extensions look natural Gentle and safe hair extensions so that your hair does not suffer. In a few hours, we will transform rare, weak and short hair into luxurious long and healthy hair. We work exclusively with high-quality hair. Thanks to micro and nano capsules, the extensions will be invisible and comfortable. Free consultation before each extension. We use high-quality hair, time-tested
|
226 |
+
|
227 |
+
We use small, neat, comfortable
|
228 |
+
capsules and make an unnoticeable transition
|
229 |
+
We consult
|
230 |
+
and answer all
|
231 |
+
questions before and after extensions
|
232 |
+
Safe extensions without discomfort in wearing. Due to the correct placement of the capsules, the result of the extension is invisible. A procedure that requires the attention and accuracy of the master. With proper hair removal, the structure of native hair is not damaged We provide a large selection of colors Ask the master a question and we will answer all your questions We work in the hot Italian extension technique. This technique is the most comfortable because it does not require much self-care. We recommend doing a correction every 2-3 months. With the Italian technique, you can do various hairstyles and even make ponytails. To form capsules, we use good refractory keratin. We work with a proven supplier of natural Slavic hair. We have a large selection of colors, lengths and hair structures."""
|
233 |
+
|
234 |
|
|
|
|
|
|
|
|
|
235 |
|
236 |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
237 |
|
238 |
+
### Instruction:
|
239 |
+
Describe the topic of website from its text :
|
240 |
|
241 |
+
### ExampleInput:
|
242 |
+
{}
|
243 |
|
244 |
+
### ExampleResponse: The website of the master of hair extensions.
|
245 |
+
|
246 |
+
### Input:
|
247 |
+
{}
|
248 |
+
|
249 |
+
### Response:"""
|
250 |
+
|
251 |
+
prompt = alpaca_prompt.format(example_input,translated)
|
252 |
+
|
253 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
254 |
+
|
255 |
+
with autocast(device_type='cuda'):
|
256 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
257 |
+
outputs = model.generate(**inputs, max_new_tokens=128, use_cache=True)
|
258 |
+
|
259 |
+
# inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
260 |
+
# outputs = model.generate(inputs.input_ids, max_new_tokens=64, use_cache=True)
|
261 |
|
|
|
262 |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
263 |
final_answer = summary.split("### Response:")[1].strip()
|
264 |
return final_answer
|
|
|
275 |
# Launch the interface
|
276 |
iface.launch()
|
277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|