File size: 6,158 Bytes
82334b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36a43ba
 
82334b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright 2024 LY Corporation

# LY Corporation licenses this file to you under the Apache License,
# version 2.0 (the "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at:

#   https://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.

import gradio as gr
import hydra
import matplotlib.pyplot as plt
import torch
import torchaudio
from g2p_en import G2p
from hydra.utils import instantiate
from omegaconf import OmegaConf
from promptttspp.text.eng import symbols, text_to_sequence
from promptttspp.utils.model import lowpass_filter
import nltk


def load_model(model_cfg, model_ckpt_path, vocoder_cfg, vocoder_ckpt_path):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = instantiate(model_cfg)
    model.load_state_dict(torch.load(model_ckpt_path, map_location="cpu")["model"])
    model = model.to(device).eval()

    vocoder = instantiate(vocoder_cfg)
    vocoder.load_state_dict(
        torch.load(vocoder_ckpt_path, map_location="cpu")["generator"]
    )
    vocoder = vocoder.to(device).eval()
    return model, vocoder


def build_ui(g2p, model, vocoder, to_mel, mel_stats):
    content_placeholder = (
        "This is text to speech demo, which allows you to control the speaker identity "
        "in natural language as follows."
    )
    style_placeholder = "A man speaks slowly in a low tone."

    @torch.no_grad()
    def onclick_synthesis(content_prompt, style_prompt=None, reference_mel=None):
        assert style_prompt is not None or reference_mel is not None
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        phonemes = g2p(content_prompt)
        phonemes = [p if p not in [",", "."] else "sil" for p in phonemes]
        phonemes = [p for p in phonemes if p in symbols]
        phoneme_ids = text_to_sequence(" ".join(phonemes))
        phoneme_ids = torch.LongTensor(phoneme_ids)[None, :].to(device)
        if style_prompt is not None:
            dec, log_cf0, vuv = model.infer(
                phoneme_ids,
                style_prompt=style_prompt,
                use_max=True,
                noise_scale=0.5,
                return_f0=True,
            )
        else:
            reference_mel = (reference_mel - mel_stats["mean"]) / mel_stats["std"]
            reference_mel = reference_mel.to(device)
            dec, log_cf0, vuv = model.infer(
                phoneme_ids,
                reference_mel=reference_mel,
                use_max=True,
                noise_scale=0.5,
                return_f0=True,
            )
        modfs = int(1.0 / (10 * 0.001))
        log_cf0 = lowpass_filter(log_cf0, modfs, cutoff=20)
        f0 = log_cf0.exp()
        f0[vuv < 0.5] = 0
        dec = dec * mel_stats["std"] + mel_stats["mean"]
        wav = vocoder(dec, f0).squeeze(1).cpu()
        return wav

    def onclick_with_style_prompt(content_prompt, style_prompt):
        wav = onclick_synthesis(
            content_prompt=content_prompt, style_prompt=style_prompt
        )
        mel = to_mel(wav)
        fig = plt.figure(figsize=(12, 8))
        plt.imshow(mel.squeeze().numpy(), aspect="auto", origin="lower")
        return (to_mel.sample_rate, wav.squeeze().numpy()), fig

    def onclick_with_reference_mel(content_prompt, reference_wav_path):
        wav, _ = torchaudio.load(reference_wav_path)
        ref_mel = to_mel(wav)
        wav = onclick_synthesis(content_prompt=content_prompt, reference_mel=ref_mel)
        mel = to_mel(wav)
        fig = plt.figure(figsize=(12, 8))
        plt.imshow(mel.squeeze().numpy(), aspect="auto", origin="lower")
        return (to_mel.sample_rate, wav.squeeze().numpy()), fig

    with gr.Blocks() as demo:
        gr.Markdown("# PromptTTS++: Controlling Speaker Identity in Prompt-Based Text-to-Speech Using Natural Language Descriptions")
        gr.Markdown("### You can check the [paper](https://arxiv.org/abs/2309.08140) and [code](https://github.com/line/promptttspp).")
        gr.Markdown("### NOTE: Please do not enter personal information.")
        content_prompt = gr.Textbox(
            content_placeholder, lines=3, label="Content prompt"
        )
        with gr.Tabs():
            with gr.TabItem("Style prompt"):
                style_prompt = gr.Textbox(
                    style_placeholder, lines=3, label="Style prompt"
                )
                syn_button1 = gr.Button("Synthesize")
                wav1 = gr.Audio(label="Output wav", elem_id="prompt")
                plot1 = gr.Plot(label="Output mel", elem_id="prompt")
            with gr.TabItem("Reference wav"):
                ref_wav_path = gr.Audio(
                    type="filepath", label="Reference wav", elem_id="ref"
                )
                syn_button2 = gr.Button("Synthesize")
                wav2 = gr.Audio(label="Output wav", elem_id="ref")
                plot2 = gr.Plot(label="Output mel", elem_id="ref")
        syn_button1.click(
            onclick_with_style_prompt,
            inputs=[content_prompt, style_prompt],
            outputs=[wav1, plot1],
        )
        syn_button2.click(
            onclick_with_reference_mel,
            inputs=[content_prompt, ref_wav_path],
            outputs=[wav2, plot2],
        )
    demo.launch()


@hydra.main(version_base=None, config_path="egs/proposed/bin/conf", config_name="demo")
def main(cfg):
    model, vocoder = load_model(
        cfg.model, cfg.model_ckpt_path, cfg.vocoder, cfg.vocoder_ckpt_path
    )
    to_mel = instantiate(cfg.transforms)
    # If the NLTK version is 3.9.1, this download code might be necessary.
    nltk.download('averaged_perceptron_tagger_eng') 
    g2p = G2p()
    mel_stats = OmegaConf.load(cfg.mel_stats_file)
    build_ui(g2p, model, vocoder, to_mel, mel_stats)


if __name__ == "__main__":
    main()