File size: 24,834 Bytes
6ffe23f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import logging
import sys
import tempfile
from glob import glob
from torchsummary import summary
import numpy as np
import pandas as pd
from tqdm import tqdm
import torch
from torch.utils.tensorboard import SummaryWriter
from torch.cuda.amp import autocast, GradScaler
import torch.nn as nn
import torchvision
import monai
from monai.metrics import DiceMetric, ConfusionMatrixMetric, MeanIoU
from monai.visualize import plot_2d_or_3d_image
from visualization import visualize_patient 
from sliding_window import sw_inference
from data_preparation import build_dataset 
from models import UNet2D, UNet3D
from loss import WeaklyDiceFocalLoss
from sklearn.linear_model import LinearRegression
from nrrd import write, read 
import morphsnakes as ms
from monai.data import decollate_batch

    
def build_optimizer(model, config):

    if config['LOSS'] == "gdice":
        loss_function = monai.losses.GeneralizedDiceLoss(
            include_background=config['EVAL_INCLUDE_BACKGROUND'],
            reduction="mean", to_onehot_y=True, sigmoid=True) if len(config['KEEP_CLASSES'])<=2 else monai.losses.GeneralizedDiceLoss(
            include_background=config['EVAL_INCLUDE_BACKGROUND'], reduction="mean", to_onehot_y=False, softmax=True)
    elif config['LOSS'] == 'cdice':
        loss_function = monai.losses.DiceCELoss(
            include_background=config['EVAL_INCLUDE_BACKGROUND'],
            reduction="mean", to_onehot_y=True, sigmoid=True) if len(config['KEEP_CLASSES'])<=2 else monai.losses.DiceCELoss(
            include_background=config['EVAL_INCLUDE_BACKGROUND'], reduction="mean", to_onehot_y=False, softmax=True)
    elif config['LOSS'] == 'mdice':
        loss_function = monai.losses.MaskedDiceLoss()
    elif config['LOSS'] == 'wdice':
        # Example with 3 classes (including the background: label 0).
        # The distance between the background class (label 0) and the other classes is the maximum, equal to 1.
        # The distance between class 1 and class 2 is 0.5.
        dist_mat = np.array([[0.0, 1.0, 1.0], [1.0, 0.0, 0.5], [1.0, 0.5, 0.0]], dtype=np.float32)
        loss_function = monai.losses.GeneralizedWassersteinDiceLoss(dist_matrix=dist_mat)
    elif config['LOSS'] == "fdice":
        loss_function = monai.losses.DiceFocalLoss(
            include_background=config['EVAL_INCLUDE_BACKGROUND'], to_onehot_y=True, sigmoid=True) if len(config['KEEP_CLASSES'])<=2 else monai.losses.DiceFocalLoss(
            include_background=config['EVAL_INCLUDE_BACKGROUND'], to_onehot_y=False, softmax=True)
    elif config['LOSS'] == "wfdice":
        loss_function = WeaklyDiceFocalLoss(include_background=config['EVAL_INCLUDE_BACKGROUND'], to_onehot_y=True, sigmoid=True, lambda_weak=config['LAMBDA_WEAK']) if len(config['KEEP_CLASSES'])<=2 else WeaklyDiceFocalLoss(include_background=config['EVAL_INCLUDE_BACKGROUND'], to_onehot_y=False, softmax=True, lambda_weak=config['LAMBDA_WEAK'])
    else:
        loss_function = monai.losses.DiceLoss(
            include_background=config['EVAL_INCLUDE_BACKGROUND'],
            reduction="mean", to_onehot_y=True, sigmoid=True, squared_pred=True) if len(config['KEEP_CLASSES'])<=2 else monai.losses.DiceLoss(
            include_background=config['EVAL_INCLUDE_BACKGROUND'], reduction="mean", to_onehot_y=False, softmax=True, squared_pred=True)

    eval_metrics = [
        ("sensitivity", ConfusionMatrixMetric(include_background=config['EVAL_INCLUDE_BACKGROUND'], metric_name='sensitivity', reduction="mean_batch")),
        ("specificity", ConfusionMatrixMetric(include_background=config['EVAL_INCLUDE_BACKGROUND'], metric_name='specificity', reduction="mean_batch")),
        ("accuracy", ConfusionMatrixMetric(include_background=config['EVAL_INCLUDE_BACKGROUND'], metric_name='accuracy', reduction="mean_batch")),
        ("dice", DiceMetric(include_background=config['EVAL_INCLUDE_BACKGROUND'], reduction="mean_batch")),
        ("IoU", MeanIoU(include_background=config['EVAL_INCLUDE_BACKGROUND'], reduction="mean_batch"))
    ]

    optimizer = torch.optim.Adam(model.parameters(), config['LEARNING_RATE'], weight_decay=1e-5, amsgrad=True)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=config['MAX_EPOCHS'])
    return loss_function, optimizer, lr_scheduler, eval_metrics


    
def load_weights(model, config):
    try:
        model.load_state_dict(torch.load("checkpoints/" + config['PRETRAINED_WEIGHTS'] + ".pth", map_location=torch.device(config['DEVICE'])))
        print("Model weights from", config['PRETRAINED_WEIGHTS'], "have been loaded")
    except Exception as e:
        try:
            model.load_state_dict(torch.load(config['PRETRAINED_WEIGHTS'], map_location=torch.device(config['DEVICE'])))
            print("Model weights from", config['PRETRAINED_WEIGHTS'], "have been loaded")
        except Exception as e: # load 
            print("WARNING: weights were not loaded. ", e)
            pass    
    
    return model 


def build_model(config):
    
    config = get_defaults(config)
    
    dropout_prob = config['DROPOUT']
    
    if "SegResNetVAE" in config["MODEL_NAME"]:
        model = monai.networks.nets.SegResNetVAE(
            input_image_size=config['ROI_SIZE'] if "3D" in config['MODEL_NAME'] else (config['ROI_SIZE'][0], config['ROI_SIZE'][1]),
            vae_estimate_std=False, 
            vae_default_std=0.3, 
            vae_nz=256, 
            spatial_dims=3 if "3D" in config["MODEL_NAME"] else 2,
            blocks_down=[1, 2, 2, 4],
            blocks_up=[1, 1, 1],
            init_filters=16,
            in_channels=1,
            norm='instance',
            out_channels=len(config['KEEP_CLASSES']),
            dropout_prob=dropout_prob,
        ).to(config['DEVICE'])
    
    elif "SegResNet" in config["MODEL_NAME"]:
        model = monai.networks.nets.SegResNet(
            spatial_dims=3 if "3D" in config["MODEL_NAME"] else 2,
            blocks_down=[1, 2, 2, 4],
            blocks_up=[1, 1, 1],
            init_filters=16,
            in_channels=1,
            out_channels=len(config['KEEP_CLASSES']),
            dropout_prob=dropout_prob,
            norm="instance"
        ).to(config['DEVICE'])
    
    elif "SwinUNETR" in config["MODEL_NAME"]:
        model = monai.networks.nets.SwinUNETR(
          img_size=config['ROI_SIZE'],
          in_channels=1,
          out_channels=len(config['KEEP_CLASSES']),
          feature_size=48,
          drop_rate=dropout_prob,
          attn_drop_rate=0.0,
          dropout_path_rate=0.0,
          use_checkpoint=True
       ).to(config['DEVICE'])
    
    elif "UNETR" in config["MODEL_NAME"]:
        model = monai.networks.nets.UNETR(
          img_size=config['ROI_SIZE'] if "3D" in config['MODEL_NAME'] else (config['ROI_SIZE'][0], config['ROI_SIZE'][1]),
          in_channels=1,
          out_channels=len(config['KEEP_CLASSES']),
          feature_size=16,
          hidden_size=256,
          mlp_dim=3072,
          num_heads=8,
          pos_embed="perceptron",
          norm_name="instance",
          res_block=True,
          dropout_rate=dropout_prob,
      ).to(config['DEVICE'])
    
    elif "MANet" in config["MODEL_NAME"]:
        if "2D" in config["MODEL_NAME"]:
            model = UNet2D(
                1, 
                len(config['KEEP_CLASSES']), 
                pab_channels=64, 
                use_batchnorm=True
                ).to(config['DEVICE'])
        else:
            model = UNet3D(
                1, 
                len(config['KEEP_CLASSES']), 
                pab_channels=32, 
                use_batchnorm=True
                ).to(config['DEVICE'])
    
    elif "UNetPlusPlus" in config["MODEL_NAME"]:
        model = monai.networks.nets.BasicUNetPlusPlus(
            spatial_dims=3 if "3D" in config["MODEL_NAME"] else 2,
            in_channels=1,
            out_channels=len(config['KEEP_CLASSES']),
            features=(32, 32, 64, 128, 256, 32),
            norm="instance",
            dropout=dropout_prob,
        ).to(config['DEVICE'])
    
    elif "UNet1" in config['MODEL_NAME']:
        model = monai.networks.nets.UNet(
            spatial_dims=3 if "3D" in config["MODEL_NAME"] else 2,
            in_channels=1,
            out_channels=len(config['KEEP_CLASSES']),
            channels=(16, 32, 64, 128, 256),
            strides=(2, 2, 2, 2),
            num_res_units=2,
            norm="instance"
        ).to(config['DEVICE'])
    
    elif "UNet2" in config['MODEL_NAME']:
        model = monai.networks.nets.UNet(
            spatial_dims=3 if "3D" in config["MODEL_NAME"] else 2,
            in_channels=1,
            out_channels=len(config['KEEP_CLASSES']),
            channels=(32, 64, 128, 256),
            strides=(2, 2, 2, 2),
            num_res_units=4,
            norm="instance"
        ).to(config['DEVICE'])
        
    else:
        print(config["MODEL_NAME"], "is not a valid model name")
        return None

    try:
        if "3D" in config['MODEL_NAME']:
            print(summary(model, input_size=(1, config['ROI_SIZE'][0], config['ROI_SIZE'][1], config['ROI_SIZE'][2])))
        else:
            print(summary(model, input_size=(1, config['ROI_SIZE'][0], config['ROI_SIZE'][1])))
    except Exception as e:
        print("could not load model summary:", e)

    if config['PRETRAINED_WEIGHTS'] is not None and config['PRETRAINED_WEIGHTS']:
        model = load_weights(model, config)
    return model


def train(model, train_loader, val_loader, loss_function, eval_metrics, optimizer, config,
          scheduler=None, writer=None, postprocessing_transforms = None, weak_labels = None):

    if writer is None: writer = SummaryWriter(log_dir="runs/" + config['EXPORT_FILE_NAME'])
    best_metric, best_metric_epoch = -1, -1
    prev_metric, patience, patience_counter = 1, config['EARLY_STOPPING_PATIENCE'], 0
    if config['AUTOCAST']: scaler = GradScaler() # Initialize GradScaler for mixed precision training

    for epoch in range(config['MAX_EPOCHS']):
        print("-" * 10)
        model.train()
        epoch_loss, step = 0, 0
        with tqdm(train_loader) as progress_bar:
            for batch_data in progress_bar:
                step += 1
                inputs, labels = batch_data["image"].to(config['DEVICE']), batch_data["mask"].to(config['DEVICE'])
                
                # only train with batches that have tumor; skip those without tumor  
                if config['TYPE'] == "tumor":
                    if torch.sum(labels[:,-1]) == 0:
                        continue
                    
                # check input shapes 
                if inputs is None or labels is None:
                    continue
                if inputs.shape[-1] != labels.shape[-1] or inputs.shape[0] != labels.shape[0]:
                    print("WARNING: Batch skipped. Image and mask shape does not match:", inputs.shape[0], labels.shape[0])
                    continue

                optimizer.zero_grad()
                if not config['AUTOCAST']:
                    
                    # segmentation output 
                    outputs = model(inputs)
                    if "SegResNetVAE" in config["MODEL_NAME"]: outputs = outputs[0]
                    if isinstance(outputs, list): outputs = outputs[0]

                    # loss 
                    if weak_labels is not None: 
                        weak_label = torch.tensor([weak_labels[step]]).to(config['DEVICE'])
                    loss = loss_function(outputs, labels, weak_label) if config['LOSS'] == 'wfdice' else loss_function(outputs, labels)
                    loss.backward()
                    optimizer.step()
                    
                else:
                    with autocast():
                        outputs = model(inputs)
                        if "SegResNetVAE" in config["MODEL_NAME"]: outputs = outputs[0]
                        if isinstance(outputs, list): outputs = outputs[0]
                        loss = loss_function(outputs, labels, [weak_labels[step]]) if config['LOSS'] == 'wfdice' else loss_function(outputs, labels)
                        
                    scaler.scale(loss).backward()
                    scaler.unscale_(optimizer)
                    if torch.isinf(loss).any():
                        print("Detected inf in gradients.")
                    else:
                        scaler.step(optimizer)
                        scaler.update()

                epoch_loss += loss.item()
                progress_bar.set_description(f'Epoch [{epoch+1}/{config["MAX_EPOCHS"]}], Loss: {epoch_loss/step:.4f}')

        epoch_loss /= step
        writer.add_scalar("train_loss_epoch", epoch_loss, epoch)
        progress_bar.set_description(f'Epoch [{epoch+1}/{config["MAX_EPOCHS"]}], Loss: {epoch_loss:.4f}')

        # validation
        if (epoch + 1) % config['VAL_INTERVAL'] == 0:
            
            # get a list of validation measures, pick one to be the decision maker 
            val_metrics, (val_images, val_labels, val_outputs) = evaluate(model, val_loader, eval_metrics, config, postprocessing_transforms)
            if isinstance(config['EVAL_METRIC'], list):
                cur_metric = np.mean([val_metrics[m] for m in config['EVAL_METRIC']])
            else:
                cur_metric = val_metrics[config['EVAL_METRIC']]
            
            # determine if better than previous best validation metric 
            if cur_metric > best_metric:
                best_metric, best_metric_epoch = cur_metric, epoch + 1
                torch.save(model.state_dict(), "checkpoints/" + config['EXPORT_FILE_NAME'] + ".pth")
            
            # early stopping
            patience_counter = patience_counter + 1 if prev_metric > cur_metric else 0
            if patience_counter == patience or epoch - best_metric_epoch > patience:
                print("Early stopping at epoch", epoch + 1)
                break
            print(f'Current epoch: {epoch + 1} current avg {config["EVAL_METRIC"]}: {cur_metric :.4f} best avg {config["EVAL_METRIC"]}: {best_metric:.4f} at epoch {best_metric_epoch}')
            prev_metric = cur_metric
            
            # writer
            for key, value in val_metrics.items():
                writer.add_scalar("val_" + key, value, epoch)
            plot_2d_or_3d_image(val_images, epoch + 1, writer, index=len(val_outputs)//2, tag="image",frame_dim=-1)
            plot_2d_or_3d_image(val_labels, epoch + 1, writer, index=len(val_outputs)//2, tag="label",frame_dim=-1)
            plot_2d_or_3d_image(val_outputs, epoch + 1, writer, index=len(val_outputs)//2, tag="output",frame_dim=-1)

        # update scheduler
        try:
            if scheduler is not None: scheduler.step()
        except:
            pass 

    print(f"Train completed, best {config['EVAL_METRIC']}: {best_metric:.4f} at epoch: {best_metric_epoch}")
    writer.close()
    return model, writer



def evaluate(model, val_loader, eval_metrics, config, postprocessing_transforms=None, use_liver_seg=False, export_filenames = [], export_file_metadata = []):

  val_metrics = {}
  model.eval()
  with torch.no_grad():

    step = 0
    for val_data in val_loader:
        # 3D: val_images has shape (1,C,H,W,Z)
        # 2D: val_images has shape (B,C,H,W)
        val_images, val_labels = val_data["image"].to(config['DEVICE']), val_data["mask"].to(config['DEVICE'])
        if use_liver_seg: val_liver = val_data["pred_liver"].to(config['DEVICE'])
                
        if (val_images[0].shape[-1] != val_labels[0].shape[-1]) or (
            "3D" not in config["MODEL_NAME"] and val_images.shape[0] != val_labels.shape[0]):
                print("WARNING: Batch skipped. Image and mask shape does not match:", val_images.shape, val_labels.shape)
                continue

        # convert outputs to probability
        if "3D" in config["MODEL_NAME"]:
            val_outputs = sw_inference(model, val_images, config['ROI_SIZE'], config['AUTOCAST'], discard_second_output='SegResNetVAE' in config['MODEL_NAME'])
        else:
            if "SegResNetVAE" in config["MODEL_NAME"]: val_outputs, _ = model(val_images)
            else: val_outputs = model(val_images)

        # post-procesing
        if postprocessing_transforms is not None:
            val_outputs = [postprocessing_transforms(i) for i in decollate_batch(val_outputs)]

        # remove tumor predictions outside liver 
        for i in range(len(val_outputs)):
            val_outputs[i][-1][torch.where(val_images[i][0] <= 1e-6)] = 0
  
        # apply morphological snakes algorithm 
        if config['POSTPROCESSING_MORF']: 
            for i in range(len(val_outputs)):
                val_outputs[i][-1] = torch.from_numpy(ms.morphological_chan_vese(val_images[i][0].cpu(), iterations=2, init_level_set=val_outputs[i][-1].cpu())).to(config['DEVICE'])
  
        for i in range(len(val_outputs)):
            if use_liver_seg: 
                # use liver model outputs for liver channel 
                val_outputs[i][1] = val_liver[i]
                # if region is tumor, assign liver prediction to 0 
                val_outputs[i][1] -= val_outputs[i][2]
        
        # compute metric for current iteration
        for metric_name, metric in eval_metrics:
            if isinstance(val_outputs[0], list):
                val_outputs = val_outputs[0]
            metric(val_outputs, val_labels)
        
        # save prediction to local folder
        if len(export_filenames) > 0:
            for _ in range(len(val_outputs)):
                numpy_array = val_outputs[_].cpu().detach().numpy()
                write(export_filenames[step], numpy_array[-1], header=export_file_metadata[step])
                print("   Segmentation exported to", export_filenames[step]) 
                step += 1
            
    # aggregate the final mean metric
    for metric_name, metric in eval_metrics:
        if "dice" in metric_name or "IoU" in metric_name: metric_value = metric.aggregate().tolist() 
        else: metric_value = metric.aggregate()[0].tolist() # a list of accuracies, one per class
        val_metrics[metric_name + "_avg"] = np.mean(metric_value)
        if config['TYPE'] != "liver":  
            for c in range(1, len(metric_value) + 1): # class-wise accuracies
                val_metrics[metric_name + "_class" + str(c)] = metric_value[c-1]
        metric.reset()

    return val_metrics, (val_images, val_labels, val_outputs)
    
    
    

def get_defaults(config):
    
    if 'TRAIN' not in config.keys(): config['TRAIN'] = True
    if 'VALID_PATIENT_RATIO' not in config.keys(): config['VALID_PATIENT_RATIO'] = 0.2
    if 'VAL_INTERVAL' not in config.keys(): config['VAL_INTERVAL'] = 1
    if 'VAL_INTERVAL' not in config.keys(): config['DROPOUT'] = 0.1
    if 'EARLY_STOPPING_PATIENCE' not in config.keys(): config['EARLY_STOPPING_PATIENCE'] = 20
    if 'AUTOCAST' not in config.keys(): config['AUTOCAST'] = False
    if 'NUM_WORKERS' not in config.keys(): config['NUM_WORKERS'] = 0
    if 'DROPOUT' not in config.keys(): config['DROPOUT'] = 0.1
    if 'ONESAMPLETESTRUN' not in config.keys(): config['ONESAMPLETESTRUN'] = False
    if 'TRAIN' not in config.keys(): config['TRAIN'] = True
    if 'DATA_AUGMENTATION' not in config.keys(): config['DATA_AUGMENTATION'] = False
    if 'POSTPROCESSING_MORF' not in config.keys(): config['POSTPROCESSING_MORF'] = False
    if 'PREPROCESSING' not in config.keys(): config['PREPROCESSING'] = ""
    if 'PRETRAINED_WEIGHTS' not in config.keys(): config['PRETRAINED_WEIGHTS'] = ""
    
    if 'EVAL_INCLUDE_BACKGROUND' not in config.keys(): 
        if config['TYPE'] == "liver": config['EVAL_INCLUDE_BACKGROUND'] = True
        else: config['EVAL_INCLUDE_BACKGROUND'] = False
    if 'EVAL_METRIC' not in config.keys(): 
        if config['TYPE'] == "liver": config['EVAL_METRIC'] = ["dice_avg"]
        else: config['EVAL_METRIC'] = ["dice_class2"]

    if 'CLINICAL_DATA_FILE' not in config.keys(): config['CLINICAL_DATA_FILE'] = "Dataset/HCC-TACE-Seg_clinical_data-V2.xlsx"
    if 'CLINICAL_PREDICTORS' not in config.keys(): config['CLINICAL_PREDICTORS'] = ['T_involvment', 'CLIP_Score','Personal history of cancer', 'TNM', 'Metastasis','fhx_can', 'Alcohol', 'Smoking', 'Evidence_of_cirh', 'AFP', 'age', 'Diabetes', 'Lymphnodes', 'Interval_BL', 'TTP']
    if 'LAMBDA_WEAK' not in config.keys(): config['LAMBDA_WEAK'] = 0.5
    if 'MASKNONLIVER' not in config.keys(): config['MASKNONLIVER'] = False
    
    if config['TYPE'] == "liver": config['KEEP_CLASSES']=["normal", "liver"]
    elif config['TYPE'] == "tumor": config['KEEP_CLASSES']=["normal", "liver", "tumor"]
    else: config['KEEP_CLASSES'] = ["normal", "liver", "tumor", "portal vein", "abdominal aorta"]
    
    config['DEVICE'] = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    config['EXPORT_FILE_NAME'] = config['TYPE']+ "_" + config['MODEL_NAME'] + "_" + config['LOSS'] + "_batchsize" + str(config['BATCH_SIZE']) + "_DA" + str(config['DATA_AUGMENTATION']) + "_HU" + str(config['HU_RANGE'][0]) + "-" + str(config['HU_RANGE'][1]) + "_" + config['PREPROCESSING'] + "_" + str(config['ROI_SIZE'][0]) + "_" + str(config['ROI_SIZE'][1]) + "_" + str(config['ROI_SIZE'][2]) + "_dropout" + str(config['DROPOUT'])
    if config['MASKNONLIVER']: config['EXPORT_FILE_NAME'] += "_wobackground"
    if config['LOSS'] == "wfdice": config['EXPORT_FILE_NAME'] += "_weaklambda" + str(config['LAMBDA_WEAK'])
    if config['PRETRAINED_WEIGHTS'] != "" and config['PRETRAINED_WEIGHTS'] != config['EXPORT_FILE_NAME']: config['EXPORT_FILE_NAME'] += "_pretraining"
    if config['POSTPROCESSING_MORF']: config['EXPORT_FILE_NAME'] += "_wpostmorf"
    if not config['EVAL_INCLUDE_BACKGROUND']: config['EXPORT_FILE_NAME'] += "_evalnobackground"

    return config 
    

def train_clinical(df_clinical):

    clinical_model = LinearRegression()
    
    # train model 
    print("Training model using", df_clinical.loc[:, df_clinical.columns != 'tumor_ratio'].shape[1], "features")
    print(df_clinical.head())
    clinical_model.fit(df_clinical.loc[:, df_clinical.columns != 'tumor_ratio'], df_clinical['tumor_ratio'])
    
    # obtain predicted ratios 
    pred = clinical_model.predict(df_clinical.loc[:, df_clinical.columns != 'tumor_ratio'])
    
    # evaluate
    corr = np.corrcoef(pred, df_clinical['tumor_ratio'])[0][1]
    mae = np.mean(np.abs(pred - df_clinical['tumor_ratio']))
    print(f"The clinical model was fitted. Corr = {corr: .6f}  MAE = {mae: .6f}")
    
    return pred 
    
    
def model_pipeline(config=None, plot=True):

    torch.cuda.empty_cache()
    config = get_defaults(config)
    print(f"You Are Running on a: {config['DEVICE']}")
    print("file name:", config['EXPORT_FILE_NAME'])

    writer = SummaryWriter(log_dir="runs/" + config['EXPORT_FILE_NAME'])
    
    # prepare data
    train_loader, valid_loader, test_loader, postprocessing_transforms, df_clinical_train = build_dataset(config, get_clinical=config['LOSS']=="wfdice")
    
    # train clinical model
    if config['LOSS'] == "wfdice": weak_labels = train_clinical(df_clinical_train)
    else: weak_labels = None
    
    # train segmentation model 
    model = build_model(config)
    loss_function, optimizer, lr_scheduler, eval_metrics = build_optimizer(model, config)
    if config['TRAIN']:
        train(model, train_loader, valid_loader, loss_function, eval_metrics, optimizer, config, lr_scheduler, writer, postprocessing_transforms, weak_labels)
        model.load_state_dict(torch.load("checkpoints/" + config['EXPORT_FILE_NAME'] + ".pth", map_location=torch.device(config['DEVICE'])))
    if config['ONESAMPLETESTRUN']:
        return None, None, None 
    
    # test segmentation model 
    test_metrics, (test_images, test_labels, test_outputs) = evaluate(model, test_loader, eval_metrics, config, postprocessing_transforms)
    print("Test metrics")
    for key, value in test_metrics.items():
      print(f"   {key}: {value:.4f}")

    # visualize
    if plot:
        if "3D" in config['MODEL_NAME']:
          visualize_patient(test_images[0].cpu(), mask=test_labels[0].cpu(), n_slices=9, title="ground truth", z_dim_last="3D" in config['MODEL_NAME'], mask_channel=-1)
          visualize_patient(test_images[0].cpu(), mask=test_outputs[0].cpu(), n_slices=9, title="predicted", z_dim_last="3D" in config['MODEL_NAME'], mask_channel=-1)
        else:
          visualize_patient(test_images.cpu(), mask=test_labels.cpu(), n_slices=9, title="ground truth", z_dim_last="3D" in config['MODEL_NAME'], mask_channel=-1)
          visualize_patient(test_images.cpu(), mask=torch.stack(test_outputs).cpu(), n_slices=9, title="predicted", z_dim_last="3D" in config['MODEL_NAME'], mask_channel=-1)

    return (test_images, test_labels, test_outputs)