lingchmao commited on
Commit
c9f5bcf
Β·
verified Β·
1 Parent(s): 1f413a0

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -25
app.py CHANGED
@@ -17,20 +17,28 @@ import llama_cpp.llama_tokenizer
17
 
18
  # global params
19
  THIS_DIR = os.path.dirname(os.path.abspath(__file__))
 
20
  examples_path = [
21
- os.path.join(THIS_DIR, 'examples', 'HCC_003.nrrd'),
22
- os.path.join(THIS_DIR, 'examples', 'HCC_007.nrrd'),
23
- os.path.join(THIS_DIR, 'examples', 'HCC_018.nrrd')
 
 
 
 
 
 
 
24
  ]
25
  models_path = {
26
  "liver": os.path.join(THIS_DIR, 'checkpoints', 'liver_3DSegResNetVAE.pth'),
27
- "tumor": os.path.join(THIS_DIR, 'checkpoints', 'tumor_3DSegResNetVAE.pth')
28
  }
29
  cache_path = {
30
  "liver mask": "liver_mask.npy",
31
  "tumor mask": "tumor_mask.npy"
32
  }
33
- device = "cpu"
34
  mydict = {}
35
 
36
 
@@ -149,22 +157,20 @@ def segment_tumor(image_name):
149
 
150
  postprocessing_tumor = Compose([
151
  Activations(sigmoid=True),
152
- # Convert to binary predictions
153
  AsDiscrete(argmax=True, to_onehot=3),
154
- # Remove small connected components for 1=liver and 2=tumor
155
- KeepLargestConnectedComponent(applied_labels=[2]),
156
- # Fill holes in the binary mask for 1=liver and 2=tumor
157
- FillHoles(applied_labels=[2]),
158
  ToTensor()
159
  ])
160
 
161
  # Preprocessing
162
  input = preprocessing_tumor(input)
163
- input = torch.multiply(input, torch.from_numpy(mydict[image_name]['liver mask'])) # mask non-liver regions
 
164
 
165
  # Generate segmentation
166
  with torch.no_grad():
167
- segmented_mask = sw_inference(tumor_model, input[None, None, :], (256,256,32), False, discard_second_output=True, overlap=0.2)[0] # input dimensions [B,C,H,W,Z]
168
 
169
  # Postprocess image
170
  segmented_mask = postprocessing_tumor(segmented_mask)[-1].numpy() # background, liver, tumor
@@ -198,13 +204,9 @@ def segment_liver(image_name):
198
  ])
199
 
200
  postprocessing_liver = Compose([
201
- # Apply softmax activation to convert logits to probabilities
202
  Activations(sigmoid=True),
203
- # Convert predicted probabilities to discrete values (0 or 1)
204
  AsDiscrete(argmax=True, to_onehot=None),
205
- # Remove small connected components for 1=liver and 2=tumor
206
  KeepLargestConnectedComponent(applied_labels=[1]),
207
- # Fill holes in the binary mask for 1=liver and 2=tumor
208
  FillHoles(applied_labels=[1]),
209
  ToTensor()
210
  ])
@@ -214,7 +216,7 @@ def segment_liver(image_name):
214
 
215
  # Generate segmentation
216
  with torch.no_grad():
217
- segmented_mask = sw_inference(liver_model, input[None, None, :], (512,512,16), False, discard_second_output=True, overlap=0.2)[0] # input dimensions [B,C,H,W,Z]
218
 
219
  # Postprocess image
220
  segmented_mask = postprocessing_liver(segmented_mask)[0].numpy() # first channel
@@ -254,7 +256,7 @@ def generate_summary(image):
254
  image_name = image.name.split('/')[-1].replace(".nrrd","")
255
 
256
  if "liver mask" not in mydict[image_name] or "tumor mask" not in mydict[image_name]:
257
- return "β›” You need to generate both liver and tumor masks before we can create a summary report.", "Not generated"
258
 
259
  # extract tumor features from CT scan
260
  features = generate_features(mydict[image_name]["img"], mydict[image_name]["liver mask"], mydict[image_name]["tumor mask"])
@@ -270,14 +272,12 @@ def generate_summary(image):
270
 
271
  # openai.api_key = os.environ["OPENAI"]
272
  system_msg = """
273
- You are a radiologist. You use a segmentation model that extracts tumor characteristics from CT scans from which you generate a diagnosis report.
274
- The report should include recommendations for next steps, and a disclaimer that these results should be taken with a grain of salt.
275
  """
276
 
277
  user_msg = f"""
278
- The tumor characteristics are:
279
- {str(features)}
280
- Please provide your interpretation of the findings and a differential diagnosis, considering the possibility of liver cancer (hepatocellular carcinoma or metastatic liver lesions).
281
  """
282
  print(user_msg)
283
 
@@ -294,7 +294,7 @@ def generate_summary(image):
294
  report = response["choices"][0]["message"]["content"]
295
  return "πŸ“ Your AI diagnosis summary report is generated! Please review below. Thank you for trying this tool!", report
296
  except Exception as e:
297
- return "Sorry. There was an error in report generation: " + e, "To be generated"
298
 
299
 
300
  with gr.Blocks() as app:
@@ -322,7 +322,7 @@ with gr.Blocks() as app:
322
  btn_upload = gr.Button("Upload")
323
 
324
  with gr.Column(scale=2):
325
- selected_mask = gr.CheckboxGroup(label='Step 2: Select mask to produce', choices=['liver mask', 'tumor mask'], value = ['liver mask'])
326
  btn_segment = gr.Button("Generate Segmentation")
327
 
328
  with gr.Row():
 
17
 
18
  # global params
19
  THIS_DIR = os.path.dirname(os.path.abspath(__file__))
20
+ SW_OVERLAP = 0.50
21
  examples_path = [
22
+ #os.path.join(THIS_DIR, 'examples', 'HCC_003.nrrd'),
23
+ #os.path.join(THIS_DIR, 'examples', 'HCC_006.nrrd'),
24
+ #os.path.join(THIS_DIR, 'examples', 'HCC_007.nrrd'),
25
+ #os.path.join(THIS_DIR, 'examples', 'HCC_018.nrrd'),
26
+ #os.path.join(THIS_DIR, 'examples', 'HCC_020.nrrd'), # bad
27
+ os.path.join(THIS_DIR, 'examples', 'HCC_036.nrrd'), #
28
+ os.path.join(THIS_DIR, 'examples', 'HCC_041.nrrd'), # good
29
+ os.path.join(THIS_DIR, 'examples', 'HCC_051.nrrd'), # ok, rerun with 0.3
30
+ #os.path.join(THIS_DIR, 'examples', 'HCC_066.nrrd'), # very bad
31
+ #os.path.join(THIS_DIR, 'examples', 'HCC_099.nrrd'), # bad
32
  ]
33
  models_path = {
34
  "liver": os.path.join(THIS_DIR, 'checkpoints', 'liver_3DSegResNetVAE.pth'),
35
+ "tumor": os.path.join(THIS_DIR, 'checkpoints', 'tumor_3DSegResNetVAE_weak_morp.pth')
36
  }
37
  cache_path = {
38
  "liver mask": "liver_mask.npy",
39
  "tumor mask": "tumor_mask.npy"
40
  }
41
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
42
  mydict = {}
43
 
44
 
 
157
 
158
  postprocessing_tumor = Compose([
159
  Activations(sigmoid=True),
 
160
  AsDiscrete(argmax=True, to_onehot=3),
161
+ KeepLargestConnectedComponent(applied_labels=[1,2]),
162
+ FillHoles(applied_labels=[1,2]),
 
 
163
  ToTensor()
164
  ])
165
 
166
  # Preprocessing
167
  input = preprocessing_tumor(input)
168
+ # mask non-liver regions
169
+ input = torch.multiply(input, torch.from_numpy(mydict[image_name]['liver mask']))
170
 
171
  # Generate segmentation
172
  with torch.no_grad():
173
+ segmented_mask = sw_inference(tumor_model, input[None, None, :], (256,256,32), False, discard_second_output=True, overlap=SW_OVERLAP)[0] # input dimensions [B,C,H,W,Z]
174
 
175
  # Postprocess image
176
  segmented_mask = postprocessing_tumor(segmented_mask)[-1].numpy() # background, liver, tumor
 
204
  ])
205
 
206
  postprocessing_liver = Compose([
 
207
  Activations(sigmoid=True),
 
208
  AsDiscrete(argmax=True, to_onehot=None),
 
209
  KeepLargestConnectedComponent(applied_labels=[1]),
 
210
  FillHoles(applied_labels=[1]),
211
  ToTensor()
212
  ])
 
216
 
217
  # Generate segmentation
218
  with torch.no_grad():
219
+ segmented_mask = sw_inference(liver_model, input[None, None, :], (512,512,16), False, discard_second_output=True, overlap=0.25)[0] # input dimensions [B,C,H,W,Z]
220
 
221
  # Postprocess image
222
  segmented_mask = postprocessing_liver(segmented_mask)[0].numpy() # first channel
 
256
  image_name = image.name.split('/')[-1].replace(".nrrd","")
257
 
258
  if "liver mask" not in mydict[image_name] or "tumor mask" not in mydict[image_name]:
259
+ return "β›” You need to generate both liver and tumor masks before we can create a summary report.", "You need to generate both liver and tumor masks before we can create a summary report."
260
 
261
  # extract tumor features from CT scan
262
  features = generate_features(mydict[image_name]["img"], mydict[image_name]["liver mask"], mydict[image_name]["tumor mask"])
 
272
 
273
  # openai.api_key = os.environ["OPENAI"]
274
  system_msg = """
275
+ You are a radiologist. You need to write a diagnosis summary (1-2 paragraphs) given tumor characteristics observed from CT scans.
276
+ The report should include your diagnosis, considering the possibility of liver cancer (hepatocellular carcinoma or metastatic liver lesions), recommendations for next steps, and a disclaimer that these results should be taken with a grain of salt.
277
  """
278
 
279
  user_msg = f"""
280
+ The characteristics of this tumor are: {str(features)}. Please provide your diagnosis summary.
 
 
281
  """
282
  print(user_msg)
283
 
 
294
  report = response["choices"][0]["message"]["content"]
295
  return "πŸ“ Your AI diagnosis summary report is generated! Please review below. Thank you for trying this tool!", report
296
  except Exception as e:
297
+ return "Sorry. There was an error in report generation: " + e, "Sorry. There was an error in report generation: " + e
298
 
299
 
300
  with gr.Blocks() as app:
 
322
  btn_upload = gr.Button("Upload")
323
 
324
  with gr.Column(scale=2):
325
+ selected_mask = gr.CheckboxGroup(label='Step 2: Select mask to produce', choices=['liver mask', 'tumor mask'], value = ['liver mask', 'tumor mask'])
326
  btn_segment = gr.Button("Generate Segmentation")
327
 
328
  with gr.Row():