Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -56,20 +56,7 @@ def yolov8_img_inference(
|
|
56 |
# count 'car' objects in the results
|
57 |
# count_result = results[0].boxes.cls[0].item()
|
58 |
# count_result = results[0].boxes.cls.tolist()
|
59 |
-
object_counts = {x: 0 for x in names}
|
60 |
-
for prediction in predictions:
|
61 |
-
for c in prediction.boxes.cls:
|
62 |
-
c = int(c)
|
63 |
-
if c in names:
|
64 |
-
object_counts[c] += 1
|
65 |
-
elif c not in names:
|
66 |
-
object_counts[c] = 1
|
67 |
-
|
68 |
-
present_objects = object_counts.copy()
|
69 |
|
70 |
-
for i in object_counts:
|
71 |
-
if object_counts[i] < 1:
|
72 |
-
present_objects.pop(i)
|
73 |
|
74 |
# clist= results[0].boxes.cls.tolist()
|
75 |
# cls = set()
|
@@ -77,7 +64,7 @@ def yolov8_img_inference(
|
|
77 |
# cls.add(model.names[int(cno)])
|
78 |
|
79 |
# count_result = results.pandas().xyxy[0].value_counts('name')
|
80 |
-
return render
|
81 |
# results = model.predict(image, imgsz=image_size, return_outputs=True)
|
82 |
# results = model.predict(image)
|
83 |
# object_prediction_list = []
|
@@ -107,7 +94,23 @@ def yolov8_img_inference(
|
|
107 |
# output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
|
108 |
# return output_image['image']
|
109 |
# render = render_result(model=model, image=image, result=results[0])
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
|
113 |
|
@@ -127,7 +130,7 @@ inputs_image = [
|
|
127 |
title = "Tất cả do anh Đạt"
|
128 |
|
129 |
interface_image = gr.Interface(
|
130 |
-
fn=yolov8_img_inference,
|
131 |
inputs=inputs_image,
|
132 |
outputs=[gr.Image(type="pil"),gr.Textbox(show_label=False)],
|
133 |
title=title,
|
|
|
56 |
# count 'car' objects in the results
|
57 |
# count_result = results[0].boxes.cls[0].item()
|
58 |
# count_result = results[0].boxes.cls.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
|
|
|
|
|
|
60 |
|
61 |
# clist= results[0].boxes.cls.tolist()
|
62 |
# cls = set()
|
|
|
64 |
# cls.add(model.names[int(cno)])
|
65 |
|
66 |
# count_result = results.pandas().xyxy[0].value_counts('name')
|
67 |
+
return render
|
68 |
# results = model.predict(image, imgsz=image_size, return_outputs=True)
|
69 |
# results = model.predict(image)
|
70 |
# object_prediction_list = []
|
|
|
94 |
# output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
|
95 |
# return output_image['image']
|
96 |
# render = render_result(model=model, image=image, result=results[0])
|
97 |
+
def count_objects(predictions, target_classes):
|
98 |
+
object_counts = {x: 0 for x in target_classes}
|
99 |
+
for prediction in predictions:
|
100 |
+
for c in prediction.boxes.cls:
|
101 |
+
c = int(c)
|
102 |
+
if c in target_classes:
|
103 |
+
object_counts[c] += 1
|
104 |
+
elif c not in target_classes:
|
105 |
+
object_counts[c] = 1
|
106 |
+
|
107 |
+
present_objects = object_counts.copy()
|
108 |
+
|
109 |
+
for i in object_counts:
|
110 |
+
if object_counts[i] < 1:
|
111 |
+
present_objects.pop(i)
|
112 |
+
|
113 |
+
return present_objects
|
114 |
|
115 |
|
116 |
|
|
|
130 |
title = "Tất cả do anh Đạt"
|
131 |
|
132 |
interface_image = gr.Interface(
|
133 |
+
fn=yolov8_img_inference, count_objects
|
134 |
inputs=inputs_image,
|
135 |
outputs=[gr.Image(type="pil"),gr.Textbox(show_label=False)],
|
136 |
title=title,
|