linhcuem's picture
Create app.py
1db4b40
import json
import gradio as gr
import yolov5
from PIL import Image
from huggingface_hub import hf_hub_download
import os
app_title = "Detect defects in bird nest jar"
models_ids = ['linhcuem/yolov5m_loi_kimloai']
current_model_id = models_ids[-1]
model = yolov5.load(current_model_id)
# model_yolov8 = YOLO(DEFAULT_DET_MODEL_ID_yolov8)
examples = [['test_images/16848942292986850-a2A2448-23gmBAS_40174045.jpg', 0.25, 'linhcuem/yolov5m_loi_kimloai'], ['test_images/16848942702263890-a2A2448-23gmBAS_40174045.jpg', 0.25, 'linhcuem/yolov5m_loi_kimloai'],['test_images/16848942702263890-a2A2448-23gmBAS_40174045.jpg', 0.25, 'linhcuem/yolov5m_loi_kimloai'],
['test_images/16848948502951770-a2A2448-23gmBAS_40174045.jpg', 0.25, 'linhcuem/yolov5m_loi_kimloai']]
def predict(image, threshold=0.25, model_id=None):
#update model if required
global current_model_id
global model
if model_id != current_model_id:
model = yolov5.load(model_id)
# model_yolov8 = YOLO(DEFAULT_DET_MODEL_ID_yolov8)
current_model_id = model_id
# get model input size
config_path = hf_hub_download(repo_id=model_id, filename="config.json")
with open(config_path, "r") as f:
config = json.load(f)
input_size = config["input_size"]
#perform inference
model.conf = threshold
results = model(image, size=input_size)
numpy_image = results.render()[0]
output_image = Image.fromarray(numpy_image)
return output_image
gr.Interface(
title=app_title,
description="DO ANH DAT",
fn=predict,
inputs=[
gr.Image(type="pil"),
gr.Slider(maximum=1, step=0.01, value=0.25),
gr.Dropdown(models_ids, value=models_ids[-1]),
],
outputs=gr.Image(type="pil"),
examples=examples,
cache_examples=True if examples else Fale,
).launch(enable_queue=True)