linhdo commited on
Commit
d3a22f0
·
1 Parent(s): 4dc4616

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +95 -0
app.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import libraries
2
+ import cv2 # for reading images, draw bounding boxes
3
+ from ultralytics import YOLO
4
+ import gradio as gr
5
+
6
+ # Define constants
7
+ BOX_COLORS = {
8
+ "unchecked": (242, 48, 48),
9
+ "checked": (38, 115, 101),
10
+ "block": (242, 159, 5)
11
+ }
12
+ BOX_PADDING = 2
13
+
14
+ # Load models
15
+ DETECTION_MODEL = YOLO("models/detector-model.pt")
16
+ CLASSIFICATION_MODEL = YOLO("models/classifier-model.pt") # 0: block, 1: checked, 2: unchecked
17
+
18
+ def detect(image):
19
+ """
20
+ Output inference image with bounding box
21
+
22
+ Args:
23
+ - image: to check for checkboxes
24
+
25
+ Return: image with bounding boxes drawn
26
+ """
27
+ # Predict on image
28
+ results = DETECTION_MODEL.predict(source=image, conf=0.2, iou=0.8) # Predict on image
29
+ boxes = results[0].boxes # Get bounding boxes
30
+
31
+ if len(boxes) == 0:
32
+ return image
33
+
34
+ # Get bounding boxes
35
+ for box in boxes:
36
+ detection_class_conf = round(box.conf.item(), 2)
37
+ detection_class = list(BOX_COLORS)[int(box.cls)]
38
+ # Get start and end points of the current box
39
+ start_box = (int(box.xyxy[0][0]), int(box.xyxy[0][1]))
40
+ end_box = (int(box.xyxy[0][2]), int(box.xyxy[0][3]))
41
+ box = image[start_box[1]:end_box[1], start_box[0]: end_box[0], :]
42
+
43
+ # Determine the class of the box using classification model
44
+ cls_results = CLASSIFICATION_MODEL.predict(source=box, conf=0.5)
45
+ probs = cls_results[0].probs # cls prob, (num_class, )
46
+ classification_class = list(BOX_COLORS)[2 - int(probs.top1)]
47
+ classification_class_conf = round(probs.top1conf.item(), 2)
48
+
49
+ cls = classification_class if classification_class_conf > 0.9 else detection_class
50
+
51
+ # 01. DRAW BOUNDING BOX OF OBJECT
52
+ line_thickness = round(0.002 * (image.shape[0] + image.shape[1]) / 2) + 1
53
+ image = cv2.rectangle(img=image,
54
+ pt1=start_box,
55
+ pt2=end_box,
56
+ color=BOX_COLORS[cls],
57
+ thickness = line_thickness) # Draw the box with predefined colors
58
+
59
+ # 02. DRAW LABEL
60
+ text = cls + " " + str(detection_class_conf)
61
+ # Get text dimensions to draw wrapping box
62
+ font_thickness = max(line_thickness - 1, 1)
63
+ (text_w, text_h), _ = cv2.getTextSize(text=text, fontFace=2, fontScale=line_thickness/3, thickness=font_thickness)
64
+ # Draw wrapping box for text
65
+ image = cv2.rectangle(img=image,
66
+ pt1=(start_box[0], start_box[1] - text_h - BOX_PADDING*2),
67
+ pt2=(start_box[0] + text_w + BOX_PADDING * 2, start_box[1]),
68
+ color=BOX_COLORS[cls],
69
+ thickness=-1)
70
+ # Put class name on image
71
+ start_text = (start_box[0] + BOX_PADDING, start_box[1] - BOX_PADDING)
72
+ image = cv2.putText(img=image, text=text, org=start_text, fontFace=0, color=(255,255,255), fontScale=line_thickness/3, thickness=font_thickness)
73
+
74
+ return image
75
+
76
+ iface = gr.Interface(fn=detect,
77
+ inputs=gr.inputs.Image(label="Upload scanned document", type="filepath"),
78
+ outputs="image")
79
+ iface.launch()
80
+
81
+
82
+
83
+
84
+
85
+
86
+
87
+
88
+
89
+
90
+
91
+
92
+
93
+
94
+
95
+