Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import libraries
|
2 |
+
import cv2 # for reading images, draw bounding boxes
|
3 |
+
from ultralytics import YOLO
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Define constants
|
7 |
+
BOX_COLORS = {
|
8 |
+
"unchecked": (242, 48, 48),
|
9 |
+
"checked": (38, 115, 101),
|
10 |
+
"block": (242, 159, 5)
|
11 |
+
}
|
12 |
+
BOX_PADDING = 2
|
13 |
+
|
14 |
+
# Load models
|
15 |
+
DETECTION_MODEL = YOLO("models/detector-model.pt")
|
16 |
+
CLASSIFICATION_MODEL = YOLO("models/classifier-model.pt") # 0: block, 1: checked, 2: unchecked
|
17 |
+
|
18 |
+
def detect(image):
|
19 |
+
"""
|
20 |
+
Output inference image with bounding box
|
21 |
+
|
22 |
+
Args:
|
23 |
+
- image: to check for checkboxes
|
24 |
+
|
25 |
+
Return: image with bounding boxes drawn
|
26 |
+
"""
|
27 |
+
# Predict on image
|
28 |
+
results = DETECTION_MODEL.predict(source=image, conf=0.2, iou=0.8) # Predict on image
|
29 |
+
boxes = results[0].boxes # Get bounding boxes
|
30 |
+
|
31 |
+
if len(boxes) == 0:
|
32 |
+
return image
|
33 |
+
|
34 |
+
# Get bounding boxes
|
35 |
+
for box in boxes:
|
36 |
+
detection_class_conf = round(box.conf.item(), 2)
|
37 |
+
detection_class = list(BOX_COLORS)[int(box.cls)]
|
38 |
+
# Get start and end points of the current box
|
39 |
+
start_box = (int(box.xyxy[0][0]), int(box.xyxy[0][1]))
|
40 |
+
end_box = (int(box.xyxy[0][2]), int(box.xyxy[0][3]))
|
41 |
+
box = image[start_box[1]:end_box[1], start_box[0]: end_box[0], :]
|
42 |
+
|
43 |
+
# Determine the class of the box using classification model
|
44 |
+
cls_results = CLASSIFICATION_MODEL.predict(source=box, conf=0.5)
|
45 |
+
probs = cls_results[0].probs # cls prob, (num_class, )
|
46 |
+
classification_class = list(BOX_COLORS)[2 - int(probs.top1)]
|
47 |
+
classification_class_conf = round(probs.top1conf.item(), 2)
|
48 |
+
|
49 |
+
cls = classification_class if classification_class_conf > 0.9 else detection_class
|
50 |
+
|
51 |
+
# 01. DRAW BOUNDING BOX OF OBJECT
|
52 |
+
line_thickness = round(0.002 * (image.shape[0] + image.shape[1]) / 2) + 1
|
53 |
+
image = cv2.rectangle(img=image,
|
54 |
+
pt1=start_box,
|
55 |
+
pt2=end_box,
|
56 |
+
color=BOX_COLORS[cls],
|
57 |
+
thickness = line_thickness) # Draw the box with predefined colors
|
58 |
+
|
59 |
+
# 02. DRAW LABEL
|
60 |
+
text = cls + " " + str(detection_class_conf)
|
61 |
+
# Get text dimensions to draw wrapping box
|
62 |
+
font_thickness = max(line_thickness - 1, 1)
|
63 |
+
(text_w, text_h), _ = cv2.getTextSize(text=text, fontFace=2, fontScale=line_thickness/3, thickness=font_thickness)
|
64 |
+
# Draw wrapping box for text
|
65 |
+
image = cv2.rectangle(img=image,
|
66 |
+
pt1=(start_box[0], start_box[1] - text_h - BOX_PADDING*2),
|
67 |
+
pt2=(start_box[0] + text_w + BOX_PADDING * 2, start_box[1]),
|
68 |
+
color=BOX_COLORS[cls],
|
69 |
+
thickness=-1)
|
70 |
+
# Put class name on image
|
71 |
+
start_text = (start_box[0] + BOX_PADDING, start_box[1] - BOX_PADDING)
|
72 |
+
image = cv2.putText(img=image, text=text, org=start_text, fontFace=0, color=(255,255,255), fontScale=line_thickness/3, thickness=font_thickness)
|
73 |
+
|
74 |
+
return image
|
75 |
+
|
76 |
+
iface = gr.Interface(fn=detect,
|
77 |
+
inputs=gr.inputs.Image(label="Upload scanned document", type="filepath"),
|
78 |
+
outputs="image")
|
79 |
+
iface.launch()
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|