Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import time | |
# define core fn, which returns a generator {steps} times before returning the image | |
def fake_diffusion(image, steps): | |
original_image = image.astype(np.float32) / 255.0 | |
noisy_image = original_image + np.random.normal(0, 1, original_image.shape) | |
noisy_image = np.clip(noisy_image, 0, 1) | |
for i in range(steps): | |
time.sleep(0.2) # Shorter sleep for faster demo | |
# Simulate denoising: gradually revert to the original image | |
progress = (i + 1) / steps | |
denoised_step = (1 - progress) * noisy_image + progress * original_image | |
denoised_step = np.clip(denoised_step, 0, 1) | |
yield (denoised_step * 255).astype(np.uint8) | |
demo = gr.Interface( | |
fake_diffusion, | |
inputs=[ | |
gr.Image(type="numpy", label="Input Image", value="https://gradio-builds.s3.amazonaws.com/diffusion_image/cute_dog.jpg"), | |
gr.Slider(1, 20, 10, label="Denoising Steps") | |
], | |
outputs=gr.Image(type="numpy", label="Denoised Image"), | |
title="Fake Image Diffusion Demo", | |
description="Upload an image and see a fake diffusion process denoise it step-by-step. Adjust the number of denoising steps using the slider." | |
) | |
# define queue - required for generators | |
demo.queue() | |
demo.launch() |