linkdom
Update app.py
147d42f
raw
history blame
1.29 kB
import gradio as gr
import numpy as np
import time
# define core fn, which returns a generator {steps} times before returning the image
def fake_diffusion(image, steps):
original_image = image.astype(np.float32) / 255.0
noisy_image = original_image + np.random.normal(0, 1, original_image.shape)
noisy_image = np.clip(noisy_image, 0, 1)
for i in range(steps):
time.sleep(0.2) # Shorter sleep for faster demo
# Simulate denoising: gradually revert to the original image
progress = (i + 1) / steps
denoised_step = (1 - progress) * noisy_image + progress * original_image
denoised_step = np.clip(denoised_step, 0, 1)
yield (denoised_step * 255).astype(np.uint8)
demo = gr.Interface(
fake_diffusion,
inputs=[
gr.Image(type="numpy", label="Input Image", value="https://gradio-builds.s3.amazonaws.com/diffusion_image/cute_dog.jpg"),
gr.Slider(1, 20, 10, label="Denoising Steps")
],
outputs=gr.Image(type="numpy", label="Denoised Image"),
title="Fake Image Diffusion Demo",
description="Upload an image and see a fake diffusion process denoise it step-by-step. Adjust the number of denoising steps using the slider."
)
# define queue - required for generators
demo.queue()
demo.launch()