Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import time | |
def normalize(image): | |
# different methods to map image values to [0, 1] | |
# scale to [0, 1] using min-max normalization | |
# image = (image - np.min(image, keepdims=True)) / (np.max(image, keepdims=True) - np.min(image, keepdims=True)) | |
# standardize to zero mean and unit variance, then scale to [0, 1] | |
# image = (image - np.mean(image, keepdims=True)) / (np.std(image, keepdims=True) + 1e-8) # Avoid division by zero | |
# image = (image + 1) / 2 # Scale to [0, 1] | |
# just clip to [0, 1] | |
return np.clip(image, 0, 1) | |
# Renamed for clarity and consistency | |
def fake_diffusion_denoise(image, steps): | |
original_image = image.astype(np.float32) / 255.0 | |
# Add initial noise | |
noisy_start_image = original_image + np.random.normal(0, 0.7, original_image.shape) | |
noisy_start_image = normalize(noisy_start_image) | |
for i in range(steps): | |
time.sleep(0.2) | |
# Simulate denoising: gradually revert to the original image (linear progress) | |
progress = (i + 1) / steps | |
denoised_step = (1 - progress) * noisy_start_image + progress * original_image | |
denoised_step = normalize(denoised_step) | |
yield (denoised_step * 255).astype(np.uint8) | |
yield (original_image * 255).astype(np.uint8) # Ensure final image is clean | |
def real_diffusion_add_noise(image, steps): | |
base_image = image.astype(np.float32) / 255.0 | |
max_noise_std = 0.8 # Maximum noise level to reach | |
for i in range(steps): | |
time.sleep(0.2) | |
# Increase noise progressively | |
current_noise_std = max_noise_std * ((i + 1) / steps) | |
noise = np.random.normal(0, current_noise_std, base_image.shape) | |
noisy_step = base_image + noise | |
noisy_step = normalize(noisy_step) | |
yield (noisy_step * 255).astype(np.uint8) | |
# Yield the most noisy version as the final step | |
final_noise = np.random.normal(0, max_noise_std, base_image.shape) | |
final_noisy_image = normalize(base_image + final_noise) | |
yield (final_noisy_image * 255).astype(np.uint8) | |
def flow_matching_denoise(image, steps): | |
original_image = image.astype(np.float32) / 255.0 | |
# Start with a significantly noisy image | |
very_noisy_image = original_image + np.random.normal(0, 1.0, original_image.shape) # High initial noise | |
very_noisy_image = normalize(very_noisy_image) | |
for i in range(steps): | |
time.sleep(0.2) | |
# Non-linear progress using a sigmoid-like curve for smoother transition | |
p_norm = (i + 1) / steps # Normalized progress 0 to 1 | |
# Transform p_norm to a range like -5 to 5 for sigmoid | |
sigmoid_input = 10 * (p_norm - 0.5) | |
flow_progress = 1 / (1 + np.exp(-sigmoid_input)) | |
denoised_step = (1 - flow_progress) * very_noisy_image + flow_progress * original_image | |
denoised_step = normalize(denoised_step) | |
yield (denoised_step * 255).astype(np.uint8) | |
yield (original_image * 255).astype(np.uint8) # Ensure final image is clean | |
# Main processing function that routes to different methods | |
def process_image_selected_method(method_selection, input_image, num_steps): | |
if input_image is None: | |
yield np.zeros((200, 200, 3), dtype=np.uint8) | |
return | |
if method_selection == "Fake Diffusion (Denoise)": | |
yield from fake_diffusion_denoise(input_image, num_steps) | |
elif method_selection == "Real Diffusion (Add Noise)": | |
yield from real_diffusion_add_noise(input_image, num_steps) | |
elif method_selection == "Flow Matching (Denoise)": | |
yield from flow_matching_denoise(input_image, num_steps) | |
else: | |
yield input_image | |
method_choices = ["Fake Diffusion (Denoise)", "Real Diffusion (Add Noise)", "Flow Matching (Denoise)"] | |
with gr.Blocks() as demo: | |
gr.Markdown("# Diffusion Processing Demo") | |
gr.Markdown("Select a method: 'Fake Diffusion (Denoise)' and 'Flow Matching (Denoise)' will denoise an image. 'Real Diffusion (Add Noise)' will progressively add noise to the image. Adjust steps for granularity.") | |
with gr.Row(): | |
method_selection = gr.Dropdown(choices=method_choices, label="Select Method", value="Fake Diffusion (Denoise)") | |
num_steps = gr.Slider(minimum=1, maximum=30, value=10, step=1, label="Processing Steps") | |
with gr.Row(): | |
input_image = gr.Image(type="numpy", label="Input Image", value="https://gradio-builds.s3.amazonaws.com/diffusion_image/cute_dog.jpg") | |
output_image = gr.Image(type="numpy", label="Processed Image") | |
process_button = gr.Button("Process Image") | |
process_button.click( | |
fn=process_image_selected_method, | |
inputs=[method_selection, input_image, num_steps], | |
outputs=output_image | |
) | |
# define queue - required for generators | |
demo.queue() | |
demo.launch() |