# import gradio as gr | |
# import numpy as np | |
# def gennerateImage(input_array,eps): | |
# eps = eps / 100 | |
# mask = np.random.random(input_array.shape) | |
# mask = mask * 2 - 1 # 将mask的值转换为-1到1之间 | |
# noise_img = (input_array * (1 + mask * eps)).astype(np.uint8) % 255 | |
# return noise_img | |
# demo = gr.Interface( | |
# gennerateImage, | |
# inputs=[ | |
# gr.Image(), | |
# gr.Slider(1, 10, 3) | |
# ], | |
# outputs="image" | |
# ) | |
# demo.launch() | |
import gradio as gr | |
import numpy as np | |
import time | |
# define core fn, which returns a generator {steps} times before returning the image | |
def my_generator(steps): | |
for i in range(steps): | |
time.sleep(1) | |
yield i | |
yield steps | |
demo = gr.Interface(my_generator, inputs=gr.Slider(1, 10, 3), outputs="number") | |
# define queue - required for generators | |
demo.queue() | |
demo.launch() | |