File size: 3,318 Bytes
866cee0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import streamlit as st
import json
from utils import load_and_process_data, create_time_series_plot, display_statistics, call_api

if 'api_token' not in st.session_state:
    st.session_state.api_token = "p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ"

# Clear other states
for key in ['current_file', 'json_data', 'api_response']:
    if key in st.session_state:
        del st.session_state[key]

# Initialize session state variables
if 'current_file' not in st.session_state:
    st.session_state.current_file = None
if 'json_data' not in st.session_state:
    st.session_state.json_data = None
if 'api_response' not in st.session_state:
    st.session_state.api_response = None

st.title("Non-Intrusive Load Monitoring (NILM) Analysis")

st.markdown("""
This service provides detailed breakdown of energy consumption by analyzing aggregate power measurements.

### Features
- Appliance-level energy consumption breakdown
- Load pattern identification
- Device usage analysis
- Detailed consumption insights
""")

# File upload and processing
uploaded_file = st.file_uploader("Upload JSON file", type=['json'])

if uploaded_file:
    try:
        file_contents = uploaded_file.read()
        st.session_state.current_file = file_contents
        st.session_state.json_data = json.loads(file_contents)
        
        dfs = load_and_process_data(st.session_state.json_data)
        if dfs:
            st.header("Input Data")
            tabs = st.tabs(["Visualization", "Raw JSON", "Statistics"])
            
            with tabs[0]:
                for unit, df in dfs.items():
                    st.plotly_chart(create_time_series_plot(df, unit), use_container_width=True)
            
            with tabs[1]:
                st.json(st.session_state.json_data)
                
            with tabs[2]:
                display_statistics(dfs)
            
            if st.button("Run NILM Analysis"):
                if not st.session_state.api_token:
                    st.error("Please enter your API token in the sidebar first.")
                else:
                    with st.spinner("Performing NILM analysis..."):
                        st.session_state.api_response = call_api(
                            st.session_state.current_file,
                            st.session_state.api_token,
                            "inference_nilm"
                        )

    except Exception as e:
        st.error(f"Error processing file: {str(e)}")

# Display API results
if st.session_state.api_response:
    st.header("NILM Analysis Results")
    tabs = st.tabs(["Visualization", "Raw JSON", "Statistics"])
    
    with tabs[0]:
        response_dfs = load_and_process_data(
            st.session_state.api_response,
            input_data=st.session_state.json_data
        )
        if response_dfs:
            for unit, df in response_dfs.items():
                st.plotly_chart(create_time_series_plot(df, unit), use_container_width=True)
                
            # Add appliance-specific visualizations
            st.subheader("Appliance-Level Breakdown")
            # Additional NILM-specific visualizations could be added here
    
    with tabs[1]:
        st.json(st.session_state.api_response)
    
    with tabs[2]:
        if response_dfs:
            display_statistics(response_dfs)