Spaces:
Running
Running
import streamlit as st | |
import json | |
import os | |
from utils import load_and_process_data, create_time_series_plot, display_statistics, call_api | |
if 'api_token' not in st.session_state: | |
st.session_state.api_token = os.getenv('NILM_API_TOKEN') | |
page_id = 1 | |
if 'current_page' not in st.session_state: | |
st.session_state.current_page = page_id | |
elif st.session_state.current_page != page_id: | |
# Clear API response when switching to this page | |
if 'api_response' in st.session_state: | |
st.session_state.api_response = None | |
# Update current page | |
st.session_state.current_page = page_id | |
# Initialize session state variables | |
if 'current_file' not in st.session_state: | |
st.session_state.current_file = None | |
if 'json_data' not in st.session_state: | |
st.session_state.json_data = None | |
if 'api_response' not in st.session_state: | |
st.session_state.api_response = None | |
if 'using_default_file' not in st.session_state: | |
st.session_state.using_default_file = True | |
st.title("Short Term Energy Consumption Forecasting") | |
st.markdown(""" | |
This service provides short-term forecasting of energy consumption patterns. | |
Upload your energy consumption data to generate predictions for the near future. | |
### Features | |
- Hourly consumption forecasting | |
- Interactive visualizations | |
- Statistical analysis of predictions | |
""") | |
# Default file path | |
default_file_path = "samples/1_short_term_consumption.json" # Adjust this path to your default file | |
# File upload and processing | |
uploaded_file = st.file_uploader("Upload JSON file (or use default)", type=['json']) | |
# Load default file if no file is uploaded and using_default_file is True | |
if uploaded_file is None and st.session_state.using_default_file: | |
if os.path.exists(default_file_path): | |
st.info(f"Using default file: {default_file_path}") | |
with open(default_file_path, 'r') as f: | |
file_contents = f.read() | |
if st.session_state.current_file != file_contents: | |
st.session_state.current_file = file_contents | |
st.session_state.json_data = json.loads(file_contents) | |
else: | |
st.warning(f"Default file not found at: {default_file_path}") | |
st.session_state.using_default_file = False | |
# If a file is uploaded, process it | |
if uploaded_file: | |
st.session_state.using_default_file = False | |
try: | |
file_contents = uploaded_file.read() | |
st.session_state.current_file = file_contents | |
st.session_state.json_data = json.loads(file_contents) | |
except Exception as e: | |
st.error(f"Error processing file: {str(e)}") | |
# Process and display data if available | |
if st.session_state.json_data: | |
try: | |
dfs = load_and_process_data(st.session_state.json_data) | |
if dfs: | |
st.header("Input Data") | |
tabs = st.tabs(["Visualization", "Raw JSON", "Statistics"]) | |
with tabs[0]: | |
for unit, df in dfs.items(): | |
st.plotly_chart(create_time_series_plot(df, unit), use_container_width=True) | |
with tabs[1]: | |
st.json(st.session_state.json_data) | |
with tabs[2]: | |
display_statistics(dfs) | |
if st.button("Generate Short Term Forecast"): | |
if not st.session_state.api_token: | |
st.error("Please enter your API token in the sidebar first.") | |
else: | |
with st.spinner("Generating forecast..."): | |
st.session_state.api_response = call_api( | |
st.session_state.current_file, | |
st.session_state.api_token, | |
"inference_consumption_short_term" | |
) | |
except Exception as e: | |
st.error(f"Error processing data: {str(e)}") | |
# Display API results | |
if st.session_state.api_response: | |
st.header("Forecast Results") | |
tabs = st.tabs(["Visualization", "Raw JSON", "Statistics"]) | |
with tabs[0]: | |
response_dfs = load_and_process_data( | |
st.session_state.api_response, | |
input_data=st.session_state.json_data | |
) | |
if response_dfs: | |
if 'Celsius' in response_dfs: | |
del response_dfs['Celsius'] | |
for unit, df in response_dfs.items(): | |
st.plotly_chart(create_time_series_plot(df, unit), use_container_width=True) | |
with tabs[1]: | |
st.json(st.session_state.api_response) | |
with tabs[2]: | |
if response_dfs: | |
display_statistics(response_dfs) |