StefanoBergia commited on
Commit
2ba7c2a
·
1 Parent(s): c13890e

re-added app.py

Browse files
Files changed (1) hide show
  1. app.py +87 -108
app.py CHANGED
@@ -1,123 +1,102 @@
1
- # import streamlit as st
2
- # import json
3
- # import pandas as pd
4
- # import plotly.express as px
5
- # import requests
6
- # from datetime import datetime
7
- # import plotly.graph_objects as go
8
- # import os
9
- # import logging
10
-
11
-
12
-
13
-
14
- # # Configure the main page
15
- # st.set_page_config(
16
- # page_title="Energy Data Analysis Dashboard",
17
- # page_icon="⚡",
18
- # layout="wide",
19
- # initial_sidebar_state="expanded"
20
- # )
21
-
22
- # #DEFAULT_TOKEN = os.getenv('NILM_API_TOKEN', '')
23
- # DEFAULT_TOKEN = 'p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ'
24
- # print(DEFAULT_TOKEN)
25
- # logger = logging.getLogger("Data cellar demo")
26
-
27
- # logger.info(f"token : {DEFAULT_TOKEN}")
28
-
29
- # # Initialize session state variables
30
- # if 'api_token' not in st.session_state:
31
- # st.session_state.api_token = DEFAULT_TOKEN
32
- # if 'current_file' not in st.session_state:
33
- # st.session_state.current_file = None
34
- # if 'json_data' not in st.session_state:
35
- # st.session_state.json_data = None
36
- # if 'api_response' not in st.session_state:
37
- # st.session_state.api_response = None
38
-
39
- # # Sidebar configuration
40
- # with st.sidebar:
41
- # st.markdown("## API Configuration")
42
- # api_token = st.text_input("API Token", value=st.session_state.api_token, type="password")
43
- # if api_token:
44
- # st.session_state.api_token = api_token
45
 
46
- # st.markdown("""
47
- # ## About
48
- # This dashboard provides analysis of energy data through various services
49
- # including NILM analysis, consumption and production forecasting.
50
- # """)
51
 
52
- # # Main page content
53
- # st.title("Energy Data Analysis Dashboard")
54
 
55
- # # Welcome message and service descriptions
56
- # st.markdown("""
57
- # Welcome to the Energy Data Analysis Dashboard! This platform provides comprehensive tools for analyzing energy consumption and production data.
58
 
59
- # ### Available Services
60
 
61
- # You can access the following services through the navigation menu on the left:
62
 
63
- # #### 1. Energy Consumption Forecasting
64
- # - **Short Term**: Predict energy consumption patterns in the near future
65
- # - **Long Term**: Generate long-range consumption forecasts
66
 
67
- # #### 2. Energy Production Analysis
68
- # - **Short Term Production**: Forecast PV panel energy production
69
- # - **NILM Analysis**: Non-intrusive load monitoring for detailed consumption breakdown
70
 
71
- # #### 3. Advanced Analytics
72
- # - **Anomaly Detection**: Identify unusual patterns in energy consumption
73
 
74
- # ### Getting Started
75
 
76
- # 1. Select a service from the navigation menu on the left
77
- # 2. Upload your energy data file in JSON format
78
- # 3. Configure your API token if needed
79
- # 4. Run the analysis and explore the results
80
 
81
- # Each service page provides specific visualizations and analytics tailored to your needs.
82
- # """)
83
 
84
- # # Add version info and additional resources in an expander
85
- # with st.expander("Additional Information"):
86
- # st.markdown("""
87
- # ### Usage Tips
88
- # - Ensure your data is in the correct JSON format
89
- # - Keep your API token secure
90
- # - Use the visualization tools to explore your data
91
- # - Export results for further analysis
92
 
93
- # ### Support
94
- # For technical support or questions about the services, please contact your system administrator.
95
- # """)
96
 
97
- # # Footer
98
- # st.markdown("""
99
- # ---
100
- # Made with ❤️ by tLINKS Foundation
101
- # """)
102
 
103
- import streamlit as st
104
- import pandas as pd
105
- # Load Model
106
- #model = pickle.load(open('logreg_model.pkl', 'rb'))
107
- st.title('Iris Variety Prediction')
108
- # Form
109
- with st.form(key='form_parameters'):
110
- sepal_length = st.slider('Sepal Length', 4.0, 8.0, 4.0)
111
- sepal_width = st.slider('Sepal Width', 2.0, 4.5, 2.0)
112
- petal_length = st.slider('Petal Length', 1.0, 7.0, 1.0)
113
- petal_width = st.slider('Petal Width', 0.1, 2.5, 0.1)
114
- st.markdown('---')
115
- submitted = st.form_submit_button('Predict')
116
- # Data Inference
117
- data_inf = {
118
- 'sepal.length': sepal_length,
119
- 'sepal.width': sepal_width,
120
- 'petal.length': petal_length,
121
- 'petal.width': petal_width
122
- }
123
- data_inf = pd.DataFrame([data_inf])
 
1
+ import streamlit as st
2
+ import json
3
+ import pandas as pd
4
+ import plotly.express as px
5
+ import requests
6
+ from datetime import datetime
7
+ import plotly.graph_objects as go
8
+ import os
9
+ import logging
10
+
11
+
12
+
13
+
14
+ # Configure the main page
15
+ st.set_page_config(
16
+ page_title="Energy Data Analysis Dashboard",
17
+ page_icon="⚡",
18
+ layout="wide",
19
+ initial_sidebar_state="expanded"
20
+ )
21
+
22
+ #DEFAULT_TOKEN = os.getenv('NILM_API_TOKEN', '')
23
+ DEFAULT_TOKEN = 'p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ'
24
+ print(DEFAULT_TOKEN)
25
+ logger = logging.getLogger("Data cellar demo")
26
+
27
+ logger.info(f"token : {DEFAULT_TOKEN}")
28
+
29
+ # Initialize session state variables
30
+ if 'api_token' not in st.session_state:
31
+ st.session_state.api_token = DEFAULT_TOKEN
32
+ if 'current_file' not in st.session_state:
33
+ st.session_state.current_file = None
34
+ if 'json_data' not in st.session_state:
35
+ st.session_state.json_data = None
36
+ if 'api_response' not in st.session_state:
37
+ st.session_state.api_response = None
38
+
39
+ # Sidebar configuration
40
+ with st.sidebar:
41
+ st.markdown("## API Configuration")
42
+ api_token = st.text_input("API Token", value=st.session_state.api_token, type="password")
43
+ if api_token:
44
+ st.session_state.api_token = api_token
45
 
46
+ st.markdown("""
47
+ ## About
48
+ This dashboard provides analysis of energy data through various services
49
+ including NILM analysis, consumption and production forecasting.
50
+ """)
51
 
52
+ # Main page content
53
+ st.title("Energy Data Analysis Dashboard")
54
 
55
+ # Welcome message and service descriptions
56
+ st.markdown("""
57
+ Welcome to the Energy Data Analysis Dashboard! This platform provides comprehensive tools for analyzing energy consumption and production data.
58
 
59
+ ### Available Services
60
 
61
+ You can access the following services through the navigation menu on the left:
62
 
63
+ #### 1. Energy Consumption Forecasting
64
+ - **Short Term**: Predict energy consumption patterns in the near future
65
+ - **Long Term**: Generate long-range consumption forecasts
66
 
67
+ #### 2. Energy Production Analysis
68
+ - **Short Term Production**: Forecast PV panel energy production
69
+ - **NILM Analysis**: Non-intrusive load monitoring for detailed consumption breakdown
70
 
71
+ #### 3. Advanced Analytics
72
+ - **Anomaly Detection**: Identify unusual patterns in energy consumption
73
 
74
+ ### Getting Started
75
 
76
+ 1. Select a service from the navigation menu on the left
77
+ 2. Upload your energy data file in JSON format
78
+ 3. Configure your API token if needed
79
+ 4. Run the analysis and explore the results
80
 
81
+ Each service page provides specific visualizations and analytics tailored to your needs.
82
+ """)
83
 
84
+ # Add version info and additional resources in an expander
85
+ with st.expander("Additional Information"):
86
+ st.markdown("""
87
+ ### Usage Tips
88
+ - Ensure your data is in the correct JSON format
89
+ - Keep your API token secure
90
+ - Use the visualization tools to explore your data
91
+ - Export results for further analysis
92
 
93
+ ### Support
94
+ For technical support or questions about the services, please contact your system administrator.
95
+ """)
96
 
97
+ # Footer
98
+ st.markdown("""
99
+ ---
100
+ Made with ❤️ by tLINKS Foundation
101
+ """)
102