Spaces:
Sleeping
Sleeping
Commit
·
36ff46c
1
Parent(s):
155828c
added default files
Browse files- pages/1_Short_Term_Consumption.py +31 -10
- pages/2_Long_Term_Consumption.py +31 -10
- pages/3_Short_Term_Production.py +29 -9
- pages/4_NILM_Analysis.py +29 -9
- pages/5_Anomaly_Detection_Consumption.py +41 -21
- pages/6_Anomaly_Detection_Production.py +48 -28
pages/1_Short_Term_Consumption.py
CHANGED
@@ -1,16 +1,12 @@
|
|
1 |
import streamlit as st
|
2 |
import json
|
|
|
3 |
from utils import load_and_process_data, create_time_series_plot, display_statistics, call_api
|
4 |
|
5 |
|
6 |
if 'api_token' not in st.session_state:
|
7 |
st.session_state.api_token = "p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ"
|
8 |
|
9 |
-
# Clear other states
|
10 |
-
for key in ['current_file', 'json_data', 'api_response']:
|
11 |
-
if key in st.session_state:
|
12 |
-
del st.session_state[key]
|
13 |
-
|
14 |
# Initialize session state variables
|
15 |
if 'current_file' not in st.session_state:
|
16 |
st.session_state.current_file = None
|
@@ -18,6 +14,8 @@ if 'json_data' not in st.session_state:
|
|
18 |
st.session_state.json_data = None
|
19 |
if 'api_response' not in st.session_state:
|
20 |
st.session_state.api_response = None
|
|
|
|
|
21 |
|
22 |
st.title("Short Term Energy Consumption Forecasting")
|
23 |
|
@@ -31,15 +29,38 @@ Upload your energy consumption data to generate predictions for the near future.
|
|
31 |
- Statistical analysis of predictions
|
32 |
""")
|
33 |
|
|
|
|
|
|
|
34 |
# File upload and processing
|
35 |
-
uploaded_file = st.file_uploader("Upload JSON file", type=['json'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
37 |
if uploaded_file:
|
|
|
38 |
try:
|
39 |
file_contents = uploaded_file.read()
|
40 |
st.session_state.current_file = file_contents
|
41 |
st.session_state.json_data = json.loads(file_contents)
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
dfs = load_and_process_data(st.session_state.json_data)
|
44 |
if dfs:
|
45 |
st.header("Input Data")
|
@@ -65,9 +86,8 @@ if uploaded_file:
|
|
65 |
st.session_state.api_token,
|
66 |
"inference_consumption_short_term"
|
67 |
)
|
68 |
-
|
69 |
except Exception as e:
|
70 |
-
st.error(f"Error processing
|
71 |
|
72 |
# Display API results
|
73 |
if st.session_state.api_response:
|
@@ -80,7 +100,8 @@ if st.session_state.api_response:
|
|
80 |
input_data=st.session_state.json_data
|
81 |
)
|
82 |
if response_dfs:
|
83 |
-
|
|
|
84 |
for unit, df in response_dfs.items():
|
85 |
st.plotly_chart(create_time_series_plot(df, unit), use_container_width=True)
|
86 |
|
|
|
1 |
import streamlit as st
|
2 |
import json
|
3 |
+
import os
|
4 |
from utils import load_and_process_data, create_time_series_plot, display_statistics, call_api
|
5 |
|
6 |
|
7 |
if 'api_token' not in st.session_state:
|
8 |
st.session_state.api_token = "p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ"
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
# Initialize session state variables
|
11 |
if 'current_file' not in st.session_state:
|
12 |
st.session_state.current_file = None
|
|
|
14 |
st.session_state.json_data = None
|
15 |
if 'api_response' not in st.session_state:
|
16 |
st.session_state.api_response = None
|
17 |
+
if 'using_default_file' not in st.session_state:
|
18 |
+
st.session_state.using_default_file = True
|
19 |
|
20 |
st.title("Short Term Energy Consumption Forecasting")
|
21 |
|
|
|
29 |
- Statistical analysis of predictions
|
30 |
""")
|
31 |
|
32 |
+
# Default file path
|
33 |
+
default_file_path = "samples/1_short_term_consumption.json" # Adjust this path to your default file
|
34 |
+
|
35 |
# File upload and processing
|
36 |
+
uploaded_file = st.file_uploader("Upload JSON file (or use default)", type=['json'])
|
37 |
+
|
38 |
+
# Load default file if no file is uploaded and using_default_file is True
|
39 |
+
if uploaded_file is None and st.session_state.using_default_file:
|
40 |
+
if os.path.exists(default_file_path):
|
41 |
+
st.info(f"Using default file: {default_file_path}")
|
42 |
+
with open(default_file_path, 'r') as f:
|
43 |
+
file_contents = f.read()
|
44 |
+
if st.session_state.current_file != file_contents:
|
45 |
+
st.session_state.current_file = file_contents
|
46 |
+
st.session_state.json_data = json.loads(file_contents)
|
47 |
+
else:
|
48 |
+
st.warning(f"Default file not found at: {default_file_path}")
|
49 |
+
st.session_state.using_default_file = False
|
50 |
|
51 |
+
# If a file is uploaded, process it
|
52 |
if uploaded_file:
|
53 |
+
st.session_state.using_default_file = False
|
54 |
try:
|
55 |
file_contents = uploaded_file.read()
|
56 |
st.session_state.current_file = file_contents
|
57 |
st.session_state.json_data = json.loads(file_contents)
|
58 |
+
except Exception as e:
|
59 |
+
st.error(f"Error processing file: {str(e)}")
|
60 |
+
|
61 |
+
# Process and display data if available
|
62 |
+
if st.session_state.json_data:
|
63 |
+
try:
|
64 |
dfs = load_and_process_data(st.session_state.json_data)
|
65 |
if dfs:
|
66 |
st.header("Input Data")
|
|
|
86 |
st.session_state.api_token,
|
87 |
"inference_consumption_short_term"
|
88 |
)
|
|
|
89 |
except Exception as e:
|
90 |
+
st.error(f"Error processing data: {str(e)}")
|
91 |
|
92 |
# Display API results
|
93 |
if st.session_state.api_response:
|
|
|
100 |
input_data=st.session_state.json_data
|
101 |
)
|
102 |
if response_dfs:
|
103 |
+
if 'Celsius' in response_dfs:
|
104 |
+
del response_dfs['Celsius']
|
105 |
for unit, df in response_dfs.items():
|
106 |
st.plotly_chart(create_time_series_plot(df, unit), use_container_width=True)
|
107 |
|
pages/2_Long_Term_Consumption.py
CHANGED
@@ -1,15 +1,11 @@
|
|
1 |
import streamlit as st
|
2 |
import json
|
|
|
3 |
from utils import load_and_process_data, create_time_series_plot, display_statistics, call_api
|
4 |
|
5 |
if 'api_token' not in st.session_state:
|
6 |
st.session_state.api_token = "p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ"
|
7 |
|
8 |
-
# Clear other states
|
9 |
-
for key in ['current_file', 'json_data', 'api_response']:
|
10 |
-
if key in st.session_state:
|
11 |
-
del st.session_state[key]
|
12 |
-
|
13 |
# Initialize session state variables
|
14 |
if 'current_file' not in st.session_state:
|
15 |
st.session_state.current_file = None
|
@@ -17,6 +13,8 @@ if 'json_data' not in st.session_state:
|
|
17 |
st.session_state.json_data = None
|
18 |
if 'api_response' not in st.session_state:
|
19 |
st.session_state.api_response = None
|
|
|
|
|
20 |
|
21 |
st.title("Long Term Energy Consumption Forecasting")
|
22 |
|
@@ -30,15 +28,38 @@ Upload your historical consumption data to generate predictions for extended per
|
|
30 |
- Statistical analysis of predictions
|
31 |
""")
|
32 |
|
|
|
|
|
|
|
33 |
# File upload and processing
|
34 |
-
uploaded_file = st.file_uploader("Upload JSON file", type=['json'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
|
|
36 |
if uploaded_file:
|
|
|
37 |
try:
|
38 |
file_contents = uploaded_file.read()
|
39 |
st.session_state.current_file = file_contents
|
40 |
st.session_state.json_data = json.loads(file_contents)
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
42 |
dfs = load_and_process_data(st.session_state.json_data)
|
43 |
if dfs:
|
44 |
st.header("Input Data")
|
@@ -64,9 +85,8 @@ if uploaded_file:
|
|
64 |
st.session_state.api_token,
|
65 |
"inference_consumption_long_term"
|
66 |
)
|
67 |
-
|
68 |
except Exception as e:
|
69 |
-
st.error(f"Error processing
|
70 |
|
71 |
# Display API results
|
72 |
if st.session_state.api_response:
|
@@ -79,7 +99,8 @@ if st.session_state.api_response:
|
|
79 |
input_data=st.session_state.json_data
|
80 |
)
|
81 |
if response_dfs:
|
82 |
-
|
|
|
83 |
for unit, df in response_dfs.items():
|
84 |
st.plotly_chart(create_time_series_plot(df, unit), use_container_width=True)
|
85 |
|
|
|
1 |
import streamlit as st
|
2 |
import json
|
3 |
+
import os
|
4 |
from utils import load_and_process_data, create_time_series_plot, display_statistics, call_api
|
5 |
|
6 |
if 'api_token' not in st.session_state:
|
7 |
st.session_state.api_token = "p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ"
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
# Initialize session state variables
|
10 |
if 'current_file' not in st.session_state:
|
11 |
st.session_state.current_file = None
|
|
|
13 |
st.session_state.json_data = None
|
14 |
if 'api_response' not in st.session_state:
|
15 |
st.session_state.api_response = None
|
16 |
+
if 'using_default_file' not in st.session_state:
|
17 |
+
st.session_state.using_default_file = True
|
18 |
|
19 |
st.title("Long Term Energy Consumption Forecasting")
|
20 |
|
|
|
28 |
- Statistical analysis of predictions
|
29 |
""")
|
30 |
|
31 |
+
# Default file path
|
32 |
+
default_file_path = "samples/2_long_term_consumption.json" # Adjust this path to your default file
|
33 |
+
|
34 |
# File upload and processing
|
35 |
+
uploaded_file = st.file_uploader("Upload JSON file (or use default)", type=['json'])
|
36 |
+
|
37 |
+
# Load default file if no file is uploaded and using_default_file is True
|
38 |
+
if uploaded_file is None and st.session_state.using_default_file:
|
39 |
+
if os.path.exists(default_file_path):
|
40 |
+
st.info(f"Using default file: {default_file_path}")
|
41 |
+
with open(default_file_path, 'r') as f:
|
42 |
+
file_contents = f.read()
|
43 |
+
if st.session_state.current_file != file_contents:
|
44 |
+
st.session_state.current_file = file_contents
|
45 |
+
st.session_state.json_data = json.loads(file_contents)
|
46 |
+
else:
|
47 |
+
st.warning(f"Default file not found at: {default_file_path}")
|
48 |
+
st.session_state.using_default_file = False
|
49 |
|
50 |
+
# If a file is uploaded, process it
|
51 |
if uploaded_file:
|
52 |
+
st.session_state.using_default_file = False
|
53 |
try:
|
54 |
file_contents = uploaded_file.read()
|
55 |
st.session_state.current_file = file_contents
|
56 |
st.session_state.json_data = json.loads(file_contents)
|
57 |
+
except Exception as e:
|
58 |
+
st.error(f"Error processing file: {str(e)}")
|
59 |
+
|
60 |
+
# Process and display data if available
|
61 |
+
if st.session_state.json_data:
|
62 |
+
try:
|
63 |
dfs = load_and_process_data(st.session_state.json_data)
|
64 |
if dfs:
|
65 |
st.header("Input Data")
|
|
|
85 |
st.session_state.api_token,
|
86 |
"inference_consumption_long_term"
|
87 |
)
|
|
|
88 |
except Exception as e:
|
89 |
+
st.error(f"Error processing data: {str(e)}")
|
90 |
|
91 |
# Display API results
|
92 |
if st.session_state.api_response:
|
|
|
99 |
input_data=st.session_state.json_data
|
100 |
)
|
101 |
if response_dfs:
|
102 |
+
if 'Celsius' in response_dfs:
|
103 |
+
del response_dfs['Celsius']
|
104 |
for unit, df in response_dfs.items():
|
105 |
st.plotly_chart(create_time_series_plot(df, unit), use_container_width=True)
|
106 |
|
pages/3_Short_Term_Production.py
CHANGED
@@ -1,15 +1,11 @@
|
|
1 |
import streamlit as st
|
2 |
import json
|
|
|
3 |
from utils import load_and_process_data, create_time_series_plot, display_statistics, call_api
|
4 |
|
5 |
if 'api_token' not in st.session_state:
|
6 |
st.session_state.api_token = "p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ"
|
7 |
|
8 |
-
# Clear other states
|
9 |
-
for key in ['current_file', 'json_data', 'api_response']:
|
10 |
-
if key in st.session_state:
|
11 |
-
del st.session_state[key]
|
12 |
-
|
13 |
# Initialize session state variables
|
14 |
if 'current_file' not in st.session_state:
|
15 |
st.session_state.current_file = None
|
@@ -17,6 +13,8 @@ if 'json_data' not in st.session_state:
|
|
17 |
st.session_state.json_data = None
|
18 |
if 'api_response' not in st.session_state:
|
19 |
st.session_state.api_response = None
|
|
|
|
|
20 |
|
21 |
st.title("Short Term Energy Production Forecasting")
|
22 |
|
@@ -30,15 +28,38 @@ This service provides short-term forecasting of energy production patterns, part
|
|
30 |
- Statistical analysis of predictions
|
31 |
""")
|
32 |
|
|
|
|
|
|
|
33 |
# File upload and processing
|
34 |
-
uploaded_file = st.file_uploader("Upload JSON file", type=['json'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
|
|
36 |
if uploaded_file:
|
|
|
37 |
try:
|
38 |
file_contents = uploaded_file.read()
|
39 |
st.session_state.current_file = file_contents
|
40 |
st.session_state.json_data = json.loads(file_contents)
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
42 |
dfs = load_and_process_data(st.session_state.json_data)
|
43 |
if dfs:
|
44 |
st.header("Input Data")
|
@@ -64,9 +85,8 @@ if uploaded_file:
|
|
64 |
st.session_state.api_token,
|
65 |
"inference_production_short_term"
|
66 |
)
|
67 |
-
|
68 |
except Exception as e:
|
69 |
-
st.error(f"Error processing
|
70 |
|
71 |
# Display API results
|
72 |
if st.session_state.api_response:
|
|
|
1 |
import streamlit as st
|
2 |
import json
|
3 |
+
import os
|
4 |
from utils import load_and_process_data, create_time_series_plot, display_statistics, call_api
|
5 |
|
6 |
if 'api_token' not in st.session_state:
|
7 |
st.session_state.api_token = "p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ"
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
# Initialize session state variables
|
10 |
if 'current_file' not in st.session_state:
|
11 |
st.session_state.current_file = None
|
|
|
13 |
st.session_state.json_data = None
|
14 |
if 'api_response' not in st.session_state:
|
15 |
st.session_state.api_response = None
|
16 |
+
if 'using_default_file' not in st.session_state:
|
17 |
+
st.session_state.using_default_file = True
|
18 |
|
19 |
st.title("Short Term Energy Production Forecasting")
|
20 |
|
|
|
28 |
- Statistical analysis of predictions
|
29 |
""")
|
30 |
|
31 |
+
# Default file path
|
32 |
+
default_file_path = "samples/3_short_term_production.json" # Adjust this path to your default file
|
33 |
+
|
34 |
# File upload and processing
|
35 |
+
uploaded_file = st.file_uploader("Upload JSON file (or use default)", type=['json'])
|
36 |
+
|
37 |
+
# Load default file if no file is uploaded and using_default_file is True
|
38 |
+
if uploaded_file is None and st.session_state.using_default_file:
|
39 |
+
if os.path.exists(default_file_path):
|
40 |
+
st.info(f"Using default file: {default_file_path}")
|
41 |
+
with open(default_file_path, 'r') as f:
|
42 |
+
file_contents = f.read()
|
43 |
+
if st.session_state.current_file != file_contents:
|
44 |
+
st.session_state.current_file = file_contents
|
45 |
+
st.session_state.json_data = json.loads(file_contents)
|
46 |
+
else:
|
47 |
+
st.warning(f"Default file not found at: {default_file_path}")
|
48 |
+
st.session_state.using_default_file = False
|
49 |
|
50 |
+
# If a file is uploaded, process it
|
51 |
if uploaded_file:
|
52 |
+
st.session_state.using_default_file = False
|
53 |
try:
|
54 |
file_contents = uploaded_file.read()
|
55 |
st.session_state.current_file = file_contents
|
56 |
st.session_state.json_data = json.loads(file_contents)
|
57 |
+
except Exception as e:
|
58 |
+
st.error(f"Error processing file: {str(e)}")
|
59 |
+
|
60 |
+
# Process and display data if available
|
61 |
+
if st.session_state.json_data:
|
62 |
+
try:
|
63 |
dfs = load_and_process_data(st.session_state.json_data)
|
64 |
if dfs:
|
65 |
st.header("Input Data")
|
|
|
85 |
st.session_state.api_token,
|
86 |
"inference_production_short_term"
|
87 |
)
|
|
|
88 |
except Exception as e:
|
89 |
+
st.error(f"Error processing data: {str(e)}")
|
90 |
|
91 |
# Display API results
|
92 |
if st.session_state.api_response:
|
pages/4_NILM_Analysis.py
CHANGED
@@ -1,15 +1,11 @@
|
|
1 |
import streamlit as st
|
2 |
import json
|
|
|
3 |
from utils import load_and_process_data, create_time_series_plot, display_statistics, call_api
|
4 |
|
5 |
if 'api_token' not in st.session_state:
|
6 |
st.session_state.api_token = "p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ"
|
7 |
|
8 |
-
# Clear other states
|
9 |
-
for key in ['current_file', 'json_data', 'api_response']:
|
10 |
-
if key in st.session_state:
|
11 |
-
del st.session_state[key]
|
12 |
-
|
13 |
# Initialize session state variables
|
14 |
if 'current_file' not in st.session_state:
|
15 |
st.session_state.current_file = None
|
@@ -17,6 +13,8 @@ if 'json_data' not in st.session_state:
|
|
17 |
st.session_state.json_data = None
|
18 |
if 'api_response' not in st.session_state:
|
19 |
st.session_state.api_response = None
|
|
|
|
|
20 |
|
21 |
st.title("Non-Intrusive Load Monitoring (NILM) Analysis")
|
22 |
|
@@ -30,15 +28,38 @@ This service provides detailed breakdown of energy consumption by analyzing aggr
|
|
30 |
- Detailed consumption insights
|
31 |
""")
|
32 |
|
|
|
|
|
|
|
33 |
# File upload and processing
|
34 |
-
uploaded_file = st.file_uploader("Upload JSON file", type=['json'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
|
|
36 |
if uploaded_file:
|
|
|
37 |
try:
|
38 |
file_contents = uploaded_file.read()
|
39 |
st.session_state.current_file = file_contents
|
40 |
st.session_state.json_data = json.loads(file_contents)
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
42 |
dfs = load_and_process_data(st.session_state.json_data)
|
43 |
if dfs:
|
44 |
st.header("Input Data")
|
@@ -64,9 +85,8 @@ if uploaded_file:
|
|
64 |
st.session_state.api_token,
|
65 |
"inference_nilm"
|
66 |
)
|
67 |
-
|
68 |
except Exception as e:
|
69 |
-
st.error(f"Error processing
|
70 |
|
71 |
# Display API results
|
72 |
if st.session_state.api_response:
|
|
|
1 |
import streamlit as st
|
2 |
import json
|
3 |
+
import os
|
4 |
from utils import load_and_process_data, create_time_series_plot, display_statistics, call_api
|
5 |
|
6 |
if 'api_token' not in st.session_state:
|
7 |
st.session_state.api_token = "p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ"
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
# Initialize session state variables
|
10 |
if 'current_file' not in st.session_state:
|
11 |
st.session_state.current_file = None
|
|
|
13 |
st.session_state.json_data = None
|
14 |
if 'api_response' not in st.session_state:
|
15 |
st.session_state.api_response = None
|
16 |
+
if 'using_default_file' not in st.session_state:
|
17 |
+
st.session_state.using_default_file = True
|
18 |
|
19 |
st.title("Non-Intrusive Load Monitoring (NILM) Analysis")
|
20 |
|
|
|
28 |
- Detailed consumption insights
|
29 |
""")
|
30 |
|
31 |
+
# Default file path
|
32 |
+
default_file_path = "samples/4_NILM.json" # Adjust this path to your default file
|
33 |
+
|
34 |
# File upload and processing
|
35 |
+
uploaded_file = st.file_uploader("Upload JSON file (or use default)", type=['json'])
|
36 |
+
|
37 |
+
# Load default file if no file is uploaded and using_default_file is True
|
38 |
+
if uploaded_file is None and st.session_state.using_default_file:
|
39 |
+
if os.path.exists(default_file_path):
|
40 |
+
st.info(f"Using default file: {default_file_path}")
|
41 |
+
with open(default_file_path, 'r') as f:
|
42 |
+
file_contents = f.read()
|
43 |
+
if st.session_state.current_file != file_contents:
|
44 |
+
st.session_state.current_file = file_contents
|
45 |
+
st.session_state.json_data = json.loads(file_contents)
|
46 |
+
else:
|
47 |
+
st.warning(f"Default file not found at: {default_file_path}")
|
48 |
+
st.session_state.using_default_file = False
|
49 |
|
50 |
+
# If a file is uploaded, process it
|
51 |
if uploaded_file:
|
52 |
+
st.session_state.using_default_file = False
|
53 |
try:
|
54 |
file_contents = uploaded_file.read()
|
55 |
st.session_state.current_file = file_contents
|
56 |
st.session_state.json_data = json.loads(file_contents)
|
57 |
+
except Exception as e:
|
58 |
+
st.error(f"Error processing file: {str(e)}")
|
59 |
+
|
60 |
+
# Process and display data if available
|
61 |
+
if st.session_state.json_data:
|
62 |
+
try:
|
63 |
dfs = load_and_process_data(st.session_state.json_data)
|
64 |
if dfs:
|
65 |
st.header("Input Data")
|
|
|
85 |
st.session_state.api_token,
|
86 |
"inference_nilm"
|
87 |
)
|
|
|
88 |
except Exception as e:
|
89 |
+
st.error(f"Error processing data: {str(e)}")
|
90 |
|
91 |
# Display API results
|
92 |
if st.session_state.api_response:
|
pages/5_Anomaly_Detection_Consumption.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
import json
|
3 |
import pandas as pd
|
|
|
4 |
from utils import load_and_process_data, create_time_series_plot, display_statistics, call_api
|
5 |
import plotly.express as px
|
6 |
import plotly.graph_objects as go
|
@@ -9,11 +10,6 @@ import plotly.graph_objects as go
|
|
9 |
if 'api_token' not in st.session_state:
|
10 |
st.session_state.api_token = "p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ"
|
11 |
|
12 |
-
# Clear other states
|
13 |
-
for key in ['current_file', 'json_data', 'api_response']:
|
14 |
-
if key in st.session_state:
|
15 |
-
del st.session_state[key]
|
16 |
-
|
17 |
# Initialize session state variables
|
18 |
if 'current_file' not in st.session_state:
|
19 |
st.session_state.current_file = None
|
@@ -21,6 +17,8 @@ if 'json_data' not in st.session_state:
|
|
21 |
st.session_state.json_data = None
|
22 |
if 'api_response' not in st.session_state:
|
23 |
st.session_state.api_response = None
|
|
|
|
|
24 |
|
25 |
st.title("Energy Consumption Anomaly Detection")
|
26 |
|
@@ -31,20 +29,40 @@ This service analyzes energy consumption patterns to detect anomalies and unusua
|
|
31 |
- Real-time anomaly detection
|
32 |
- Consumption irregularity identification
|
33 |
- Interactive visualization of detected anomalies
|
34 |
-
|
35 |
""")
|
36 |
|
37 |
-
|
|
|
38 |
|
39 |
# File upload and processing
|
40 |
-
uploaded_file = st.file_uploader("Upload JSON file", type=['json'])
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
if uploaded_file:
|
|
|
43 |
try:
|
44 |
file_contents = uploaded_file.read()
|
45 |
st.session_state.current_file = file_contents
|
46 |
st.session_state.json_data = json.loads(file_contents)
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
dfs = load_and_process_data(st.session_state.json_data)
|
49 |
if dfs:
|
50 |
st.header("Input Data Analysis")
|
@@ -84,7 +102,6 @@ if uploaded_file:
|
|
84 |
# Add sensitivity and window_size to the request
|
85 |
modified_data = st.session_state.json_data.copy()
|
86 |
|
87 |
-
|
88 |
# Convert back to JSON and call API
|
89 |
modified_content = json.dumps(modified_data).encode('utf-8')
|
90 |
st.session_state.api_response = call_api(
|
@@ -96,9 +113,8 @@ if uploaded_file:
|
|
96 |
if st.button("Clear Results", key="clear_button"):
|
97 |
st.session_state.api_response = None
|
98 |
st.experimental_rerun()
|
99 |
-
|
100 |
except Exception as e:
|
101 |
-
st.error(f"Error processing
|
102 |
|
103 |
# Display API results
|
104 |
if st.session_state.api_response:
|
@@ -111,17 +127,21 @@ if st.session_state.api_response:
|
|
111 |
input_data=st.session_state.json_data
|
112 |
)
|
113 |
if response_dfs:
|
114 |
-
anomalies=response_dfs['boolean']
|
115 |
-
anomalies=anomalies[anomalies['datacellar:value']==True]
|
116 |
|
117 |
del response_dfs['boolean']
|
118 |
for unit, df in response_dfs.items():
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
# Create visualization with highlighted anomalies
|
126 |
st.plotly_chart(
|
127 |
fig,
|
@@ -129,4 +149,4 @@ if st.session_state.api_response:
|
|
129 |
)
|
130 |
|
131 |
with tabs[1]:
|
132 |
-
st.json(st.session_state.api_response)
|
|
|
1 |
import streamlit as st
|
2 |
import json
|
3 |
import pandas as pd
|
4 |
+
import os
|
5 |
from utils import load_and_process_data, create_time_series_plot, display_statistics, call_api
|
6 |
import plotly.express as px
|
7 |
import plotly.graph_objects as go
|
|
|
10 |
if 'api_token' not in st.session_state:
|
11 |
st.session_state.api_token = "p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ"
|
12 |
|
|
|
|
|
|
|
|
|
|
|
13 |
# Initialize session state variables
|
14 |
if 'current_file' not in st.session_state:
|
15 |
st.session_state.current_file = None
|
|
|
17 |
st.session_state.json_data = None
|
18 |
if 'api_response' not in st.session_state:
|
19 |
st.session_state.api_response = None
|
20 |
+
if 'using_default_file' not in st.session_state:
|
21 |
+
st.session_state.using_default_file = True
|
22 |
|
23 |
st.title("Energy Consumption Anomaly Detection")
|
24 |
|
|
|
29 |
- Real-time anomaly detection
|
30 |
- Consumption irregularity identification
|
31 |
- Interactive visualization of detected anomalies
|
|
|
32 |
""")
|
33 |
|
34 |
+
# Default file path
|
35 |
+
default_file_path = "samples/5_anomaly_detection_consumption.json" # Adjust this path to your default file
|
36 |
|
37 |
# File upload and processing
|
38 |
+
uploaded_file = st.file_uploader("Upload JSON file (or use default)", type=['json'])
|
39 |
|
40 |
+
# Load default file if no file is uploaded and using_default_file is True
|
41 |
+
if uploaded_file is None and st.session_state.using_default_file:
|
42 |
+
if os.path.exists(default_file_path):
|
43 |
+
st.info(f"Using default file: {default_file_path}")
|
44 |
+
with open(default_file_path, 'r') as f:
|
45 |
+
file_contents = f.read()
|
46 |
+
if st.session_state.current_file != file_contents:
|
47 |
+
st.session_state.current_file = file_contents
|
48 |
+
st.session_state.json_data = json.loads(file_contents)
|
49 |
+
else:
|
50 |
+
st.warning(f"Default file not found at: {default_file_path}")
|
51 |
+
st.session_state.using_default_file = False
|
52 |
+
|
53 |
+
# If a file is uploaded, process it
|
54 |
if uploaded_file:
|
55 |
+
st.session_state.using_default_file = False
|
56 |
try:
|
57 |
file_contents = uploaded_file.read()
|
58 |
st.session_state.current_file = file_contents
|
59 |
st.session_state.json_data = json.loads(file_contents)
|
60 |
+
except Exception as e:
|
61 |
+
st.error(f"Error processing file: {str(e)}")
|
62 |
+
|
63 |
+
# Process and display data if available
|
64 |
+
if st.session_state.json_data:
|
65 |
+
try:
|
66 |
dfs = load_and_process_data(st.session_state.json_data)
|
67 |
if dfs:
|
68 |
st.header("Input Data Analysis")
|
|
|
102 |
# Add sensitivity and window_size to the request
|
103 |
modified_data = st.session_state.json_data.copy()
|
104 |
|
|
|
105 |
# Convert back to JSON and call API
|
106 |
modified_content = json.dumps(modified_data).encode('utf-8')
|
107 |
st.session_state.api_response = call_api(
|
|
|
113 |
if st.button("Clear Results", key="clear_button"):
|
114 |
st.session_state.api_response = None
|
115 |
st.experimental_rerun()
|
|
|
116 |
except Exception as e:
|
117 |
+
st.error(f"Error processing data: {str(e)}")
|
118 |
|
119 |
# Display API results
|
120 |
if st.session_state.api_response:
|
|
|
127 |
input_data=st.session_state.json_data
|
128 |
)
|
129 |
if response_dfs:
|
130 |
+
anomalies = response_dfs['boolean']
|
131 |
+
anomalies = anomalies[anomalies['datacellar:value']==True]
|
132 |
|
133 |
del response_dfs['boolean']
|
134 |
for unit, df in response_dfs.items():
|
135 |
+
fig = create_time_series_plot(df, unit, service_type="Anomaly Detection")
|
136 |
+
# Get df values for anomalies
|
137 |
+
anomaly_df = df.iloc[anomalies['datacellar:timeStamp'].index]
|
138 |
+
fig.add_trace(go.Scatter(
|
139 |
+
x=anomaly_df['datacellar:timeStamp'],
|
140 |
+
y=anomaly_df['datacellar:value'],
|
141 |
+
mode='markers',
|
142 |
+
marker=dict(color='red'),
|
143 |
+
name='Anomalies'
|
144 |
+
))
|
145 |
# Create visualization with highlighted anomalies
|
146 |
st.plotly_chart(
|
147 |
fig,
|
|
|
149 |
)
|
150 |
|
151 |
with tabs[1]:
|
152 |
+
st.json(st.session_state.api_response)
|
pages/6_Anomaly_Detection_Production.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
import json
|
3 |
import pandas as pd
|
|
|
4 |
from utils import load_and_process_data, create_time_series_plot, display_statistics, call_api
|
5 |
import plotly.express as px
|
6 |
import plotly.graph_objects as go
|
@@ -9,11 +10,6 @@ import plotly.graph_objects as go
|
|
9 |
if 'api_token' not in st.session_state:
|
10 |
st.session_state.api_token = "p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ"
|
11 |
|
12 |
-
# Clear other states
|
13 |
-
for key in ['current_file', 'json_data', 'api_response']:
|
14 |
-
if key in st.session_state:
|
15 |
-
del st.session_state[key]
|
16 |
-
|
17 |
# Initialize session state variables
|
18 |
if 'current_file' not in st.session_state:
|
19 |
st.session_state.current_file = None
|
@@ -21,30 +17,52 @@ if 'json_data' not in st.session_state:
|
|
21 |
st.session_state.json_data = None
|
22 |
if 'api_response' not in st.session_state:
|
23 |
st.session_state.api_response = None
|
|
|
|
|
24 |
|
25 |
st.title("Energy Production Anomaly Detection")
|
26 |
|
27 |
st.markdown("""
|
28 |
-
This service analyzes energy
|
29 |
|
30 |
### Features
|
31 |
- Real-time anomaly detection
|
32 |
-
-
|
33 |
- Interactive visualization of detected anomalies
|
34 |
-
|
35 |
""")
|
36 |
|
37 |
-
|
|
|
38 |
|
39 |
# File upload and processing
|
40 |
-
uploaded_file = st.file_uploader("Upload JSON file", type=['json'])
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
if uploaded_file:
|
|
|
43 |
try:
|
44 |
file_contents = uploaded_file.read()
|
45 |
st.session_state.current_file = file_contents
|
46 |
st.session_state.json_data = json.loads(file_contents)
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
dfs = load_and_process_data(st.session_state.json_data)
|
49 |
if dfs:
|
50 |
st.header("Input Data Analysis")
|
@@ -57,7 +75,7 @@ if uploaded_file:
|
|
57 |
# Show basic statistical analysis
|
58 |
col1, col2, col3 = st.columns(3)
|
59 |
with col1:
|
60 |
-
st.metric("Average
|
61 |
f"{df['datacellar:value'].mean():.2f} {unit}")
|
62 |
with col2:
|
63 |
st.metric("Standard Deviation",
|
@@ -80,11 +98,10 @@ if uploaded_file:
|
|
80 |
if not st.session_state.api_token:
|
81 |
st.error("Please enter your API token in the sidebar first.")
|
82 |
else:
|
83 |
-
with st.spinner("Analyzing
|
84 |
# Add sensitivity and window_size to the request
|
85 |
modified_data = st.session_state.json_data.copy()
|
86 |
|
87 |
-
|
88 |
# Convert back to JSON and call API
|
89 |
modified_content = json.dumps(modified_data).encode('utf-8')
|
90 |
st.session_state.api_response = call_api(
|
@@ -96,9 +113,8 @@ if uploaded_file:
|
|
96 |
if st.button("Clear Results", key="clear_button"):
|
97 |
st.session_state.api_response = None
|
98 |
st.experimental_rerun()
|
99 |
-
|
100 |
except Exception as e:
|
101 |
-
st.error(f"Error processing
|
102 |
|
103 |
# Display API results
|
104 |
if st.session_state.api_response:
|
@@ -111,19 +127,23 @@ if st.session_state.api_response:
|
|
111 |
input_data=st.session_state.json_data
|
112 |
)
|
113 |
if response_dfs:
|
114 |
-
anomalies=response_dfs['boolean']
|
115 |
-
anomalies=anomalies[anomalies['datacellar:value']==True]
|
116 |
|
117 |
del response_dfs['boolean']
|
118 |
for unit, df in response_dfs.items():
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
127 |
# Create visualization with highlighted anomalies
|
128 |
st.plotly_chart(
|
129 |
fig,
|
@@ -131,4 +151,4 @@ if st.session_state.api_response:
|
|
131 |
)
|
132 |
|
133 |
with tabs[1]:
|
134 |
-
st.json(st.session_state.api_response)
|
|
|
1 |
import streamlit as st
|
2 |
import json
|
3 |
import pandas as pd
|
4 |
+
import os
|
5 |
from utils import load_and_process_data, create_time_series_plot, display_statistics, call_api
|
6 |
import plotly.express as px
|
7 |
import plotly.graph_objects as go
|
|
|
10 |
if 'api_token' not in st.session_state:
|
11 |
st.session_state.api_token = "p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ"
|
12 |
|
|
|
|
|
|
|
|
|
|
|
13 |
# Initialize session state variables
|
14 |
if 'current_file' not in st.session_state:
|
15 |
st.session_state.current_file = None
|
|
|
17 |
st.session_state.json_data = None
|
18 |
if 'api_response' not in st.session_state:
|
19 |
st.session_state.api_response = None
|
20 |
+
if 'using_default_file' not in st.session_state:
|
21 |
+
st.session_state.using_default_file = True
|
22 |
|
23 |
st.title("Energy Production Anomaly Detection")
|
24 |
|
25 |
st.markdown("""
|
26 |
+
This service analyzes energy production patterns to detect anomalies and unusual behavior in your data.
|
27 |
|
28 |
### Features
|
29 |
- Real-time anomaly detection
|
30 |
+
- Production irregularity identification
|
31 |
- Interactive visualization of detected anomalies
|
|
|
32 |
""")
|
33 |
|
34 |
+
# Default file path
|
35 |
+
default_file_path = "samples/6_anomaly_detection_production.json" # Adjust this path to your default file
|
36 |
|
37 |
# File upload and processing
|
38 |
+
uploaded_file = st.file_uploader("Upload JSON file (or use default)", type=['json'])
|
39 |
+
|
40 |
+
# Load default file if no file is uploaded and using_default_file is True
|
41 |
+
if uploaded_file is None and st.session_state.using_default_file:
|
42 |
+
if os.path.exists(default_file_path):
|
43 |
+
st.info(f"Using default file: {default_file_path}")
|
44 |
+
with open(default_file_path, 'r') as f:
|
45 |
+
file_contents = f.read()
|
46 |
+
if st.session_state.current_file != file_contents:
|
47 |
+
st.session_state.current_file = file_contents
|
48 |
+
st.session_state.json_data = json.loads(file_contents)
|
49 |
+
else:
|
50 |
+
st.warning(f"Default file not found at: {default_file_path}")
|
51 |
+
st.session_state.using_default_file = False
|
52 |
+
|
53 |
+
# If a file is uploaded, process it
|
54 |
if uploaded_file:
|
55 |
+
st.session_state.using_default_file = False
|
56 |
try:
|
57 |
file_contents = uploaded_file.read()
|
58 |
st.session_state.current_file = file_contents
|
59 |
st.session_state.json_data = json.loads(file_contents)
|
60 |
+
except Exception as e:
|
61 |
+
st.error(f"Error processing file: {str(e)}")
|
62 |
+
|
63 |
+
# Process and display data if available
|
64 |
+
if st.session_state.json_data:
|
65 |
+
try:
|
66 |
dfs = load_and_process_data(st.session_state.json_data)
|
67 |
if dfs:
|
68 |
st.header("Input Data Analysis")
|
|
|
75 |
# Show basic statistical analysis
|
76 |
col1, col2, col3 = st.columns(3)
|
77 |
with col1:
|
78 |
+
st.metric("Average Production",
|
79 |
f"{df['datacellar:value'].mean():.2f} {unit}")
|
80 |
with col2:
|
81 |
st.metric("Standard Deviation",
|
|
|
98 |
if not st.session_state.api_token:
|
99 |
st.error("Please enter your API token in the sidebar first.")
|
100 |
else:
|
101 |
+
with st.spinner("Analyzing production patterns..."):
|
102 |
# Add sensitivity and window_size to the request
|
103 |
modified_data = st.session_state.json_data.copy()
|
104 |
|
|
|
105 |
# Convert back to JSON and call API
|
106 |
modified_content = json.dumps(modified_data).encode('utf-8')
|
107 |
st.session_state.api_response = call_api(
|
|
|
113 |
if st.button("Clear Results", key="clear_button"):
|
114 |
st.session_state.api_response = None
|
115 |
st.experimental_rerun()
|
|
|
116 |
except Exception as e:
|
117 |
+
st.error(f"Error processing data: {str(e)}")
|
118 |
|
119 |
# Display API results
|
120 |
if st.session_state.api_response:
|
|
|
127 |
input_data=st.session_state.json_data
|
128 |
)
|
129 |
if response_dfs:
|
130 |
+
anomalies = response_dfs['boolean']
|
131 |
+
anomalies = anomalies[anomalies['datacellar:value']==True]
|
132 |
|
133 |
del response_dfs['boolean']
|
134 |
for unit, df in response_dfs.items():
|
135 |
+
fig = create_time_series_plot(df, unit, service_type="Anomaly Detection")
|
136 |
+
# Get df values for anomalies
|
137 |
+
anomaly_df = df.iloc[anomalies['datacellar:timeStamp'].index]
|
138 |
+
|
139 |
+
fig.add_trace(go.Scatter(
|
140 |
+
x=anomaly_df['datacellar:timeStamp'],
|
141 |
+
y=anomaly_df['datacellar:value'],
|
142 |
+
mode='markers',
|
143 |
+
marker=dict(color='red'),
|
144 |
+
name='Anomalies'
|
145 |
+
))
|
146 |
+
|
147 |
# Create visualization with highlighted anomalies
|
148 |
st.plotly_chart(
|
149 |
fig,
|
|
|
151 |
)
|
152 |
|
153 |
with tabs[1]:
|
154 |
+
st.json(st.session_state.api_response)
|