Spaces:
Running
Running
Commit
·
5dc2797
1
Parent(s):
14409e7
test_interface
Browse files
app.py
CHANGED
@@ -1,101 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
import json
|
3 |
import pandas as pd
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
st.
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
# Initialize session state variables
|
30 |
-
if 'api_token' not in st.session_state:
|
31 |
-
st.session_state.api_token = DEFAULT_TOKEN
|
32 |
-
if 'current_file' not in st.session_state:
|
33 |
-
st.session_state.current_file = None
|
34 |
-
if 'json_data' not in st.session_state:
|
35 |
-
st.session_state.json_data = None
|
36 |
-
if 'api_response' not in st.session_state:
|
37 |
-
st.session_state.api_response = None
|
38 |
-
|
39 |
-
# Sidebar configuration
|
40 |
-
with st.sidebar:
|
41 |
-
st.markdown("## API Configuration")
|
42 |
-
api_token = st.text_input("API Token", value=st.session_state.api_token, type="password")
|
43 |
-
if api_token:
|
44 |
-
st.session_state.api_token = api_token
|
45 |
-
|
46 |
-
st.markdown("""
|
47 |
-
## About
|
48 |
-
This dashboard provides analysis of energy data through various services
|
49 |
-
including NILM analysis, consumption and production forecasting.
|
50 |
-
""")
|
51 |
-
|
52 |
-
# Main page content
|
53 |
-
st.title("Energy Data Analysis Dashboard")
|
54 |
-
|
55 |
-
# Welcome message and service descriptions
|
56 |
-
st.markdown("""
|
57 |
-
Welcome to the Energy Data Analysis Dashboard! This platform provides comprehensive tools for analyzing energy consumption and production data.
|
58 |
-
|
59 |
-
### Available Services
|
60 |
-
|
61 |
-
You can access the following services through the navigation menu on the left:
|
62 |
-
|
63 |
-
#### 1. Energy Consumption Forecasting
|
64 |
-
- **Short Term**: Predict energy consumption patterns in the near future
|
65 |
-
- **Long Term**: Generate long-range consumption forecasts
|
66 |
-
|
67 |
-
#### 2. Energy Production Analysis
|
68 |
-
- **Short Term Production**: Forecast PV panel energy production
|
69 |
-
- **NILM Analysis**: Non-intrusive load monitoring for detailed consumption breakdown
|
70 |
-
|
71 |
-
#### 3. Advanced Analytics
|
72 |
-
- **Anomaly Detection**: Identify unusual patterns in energy consumption
|
73 |
-
|
74 |
-
### Getting Started
|
75 |
-
|
76 |
-
1. Select a service from the navigation menu on the left
|
77 |
-
2. Upload your energy data file in JSON format
|
78 |
-
3. Configure your API token if needed
|
79 |
-
4. Run the analysis and explore the results
|
80 |
-
|
81 |
-
Each service page provides specific visualizations and analytics tailored to your needs.
|
82 |
-
""")
|
83 |
-
|
84 |
-
# Add version info and additional resources in an expander
|
85 |
-
with st.expander("Additional Information"):
|
86 |
-
st.markdown("""
|
87 |
-
### Usage Tips
|
88 |
-
- Ensure your data is in the correct JSON format
|
89 |
-
- Keep your API token secure
|
90 |
-
- Use the visualization tools to explore your data
|
91 |
-
- Export results for further analysis
|
92 |
-
|
93 |
-
### Support
|
94 |
-
For technical support or questions about the services, please contact your system administrator.
|
95 |
-
""")
|
96 |
-
|
97 |
-
# Footer
|
98 |
-
st.markdown("""
|
99 |
-
---
|
100 |
-
Made with ❤️ by tLINKS Foundation
|
101 |
-
""")
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import json
|
3 |
+
# import pandas as pd
|
4 |
+
# import plotly.express as px
|
5 |
+
# import requests
|
6 |
+
# from datetime import datetime
|
7 |
+
# import plotly.graph_objects as go
|
8 |
+
# import os
|
9 |
+
# import logging
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
# # Configure the main page
|
15 |
+
# st.set_page_config(
|
16 |
+
# page_title="Energy Data Analysis Dashboard",
|
17 |
+
# page_icon="⚡",
|
18 |
+
# layout="wide",
|
19 |
+
# initial_sidebar_state="expanded"
|
20 |
+
# )
|
21 |
+
|
22 |
+
# #DEFAULT_TOKEN = os.getenv('NILM_API_TOKEN', '')
|
23 |
+
# DEFAULT_TOKEN = 'p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ'
|
24 |
+
# print(DEFAULT_TOKEN)
|
25 |
+
# logger = logging.getLogger("Data cellar demo")
|
26 |
+
|
27 |
+
# logger.info(f"token : {DEFAULT_TOKEN}")
|
28 |
+
|
29 |
+
# # Initialize session state variables
|
30 |
+
# if 'api_token' not in st.session_state:
|
31 |
+
# st.session_state.api_token = DEFAULT_TOKEN
|
32 |
+
# if 'current_file' not in st.session_state:
|
33 |
+
# st.session_state.current_file = None
|
34 |
+
# if 'json_data' not in st.session_state:
|
35 |
+
# st.session_state.json_data = None
|
36 |
+
# if 'api_response' not in st.session_state:
|
37 |
+
# st.session_state.api_response = None
|
38 |
+
|
39 |
+
# # Sidebar configuration
|
40 |
+
# with st.sidebar:
|
41 |
+
# st.markdown("## API Configuration")
|
42 |
+
# api_token = st.text_input("API Token", value=st.session_state.api_token, type="password")
|
43 |
+
# if api_token:
|
44 |
+
# st.session_state.api_token = api_token
|
45 |
+
|
46 |
+
# st.markdown("""
|
47 |
+
# ## About
|
48 |
+
# This dashboard provides analysis of energy data through various services
|
49 |
+
# including NILM analysis, consumption and production forecasting.
|
50 |
+
# """)
|
51 |
+
|
52 |
+
# # Main page content
|
53 |
+
# st.title("Energy Data Analysis Dashboard")
|
54 |
+
|
55 |
+
# # Welcome message and service descriptions
|
56 |
+
# st.markdown("""
|
57 |
+
# Welcome to the Energy Data Analysis Dashboard! This platform provides comprehensive tools for analyzing energy consumption and production data.
|
58 |
+
|
59 |
+
# ### Available Services
|
60 |
+
|
61 |
+
# You can access the following services through the navigation menu on the left:
|
62 |
+
|
63 |
+
# #### 1. Energy Consumption Forecasting
|
64 |
+
# - **Short Term**: Predict energy consumption patterns in the near future
|
65 |
+
# - **Long Term**: Generate long-range consumption forecasts
|
66 |
+
|
67 |
+
# #### 2. Energy Production Analysis
|
68 |
+
# - **Short Term Production**: Forecast PV panel energy production
|
69 |
+
# - **NILM Analysis**: Non-intrusive load monitoring for detailed consumption breakdown
|
70 |
+
|
71 |
+
# #### 3. Advanced Analytics
|
72 |
+
# - **Anomaly Detection**: Identify unusual patterns in energy consumption
|
73 |
+
|
74 |
+
# ### Getting Started
|
75 |
+
|
76 |
+
# 1. Select a service from the navigation menu on the left
|
77 |
+
# 2. Upload your energy data file in JSON format
|
78 |
+
# 3. Configure your API token if needed
|
79 |
+
# 4. Run the analysis and explore the results
|
80 |
+
|
81 |
+
# Each service page provides specific visualizations and analytics tailored to your needs.
|
82 |
+
# """)
|
83 |
+
|
84 |
+
# # Add version info and additional resources in an expander
|
85 |
+
# with st.expander("Additional Information"):
|
86 |
+
# st.markdown("""
|
87 |
+
# ### Usage Tips
|
88 |
+
# - Ensure your data is in the correct JSON format
|
89 |
+
# - Keep your API token secure
|
90 |
+
# - Use the visualization tools to explore your data
|
91 |
+
# - Export results for further analysis
|
92 |
+
|
93 |
+
# ### Support
|
94 |
+
# For technical support or questions about the services, please contact your system administrator.
|
95 |
+
# """)
|
96 |
+
|
97 |
+
# # Footer
|
98 |
+
# st.markdown("""
|
99 |
+
# ---
|
100 |
+
# Made with ❤️ by tLINKS Foundation
|
101 |
+
# """)
|
102 |
+
|
103 |
import streamlit as st
|
|
|
104 |
import pandas as pd
|
105 |
+
import pickle
|
106 |
+
# Load Model
|
107 |
+
model = pickle.load(open('logreg_model.pkl', 'rb'))
|
108 |
+
st.title('Iris Variety Prediction')
|
109 |
+
# Form
|
110 |
+
with st.form(key='form_parameters'):
|
111 |
+
sepal_length = st.slider('Sepal Length', 4.0, 8.0, 4.0)
|
112 |
+
sepal_width = st.slider('Sepal Width', 2.0, 4.5, 2.0)
|
113 |
+
petal_length = st.slider('Petal Length', 1.0, 7.0, 1.0)
|
114 |
+
petal_width = st.slider('Petal Width', 0.1, 2.5, 0.1)
|
115 |
+
st.markdown('---')
|
116 |
+
submitted = st.form_submit_button('Predict')
|
117 |
+
# Data Inference
|
118 |
+
data_inf = {
|
119 |
+
'sepal.length': sepal_length,
|
120 |
+
'sepal.width': sepal_width,
|
121 |
+
'petal.length': petal_length,
|
122 |
+
'petal.width': petal_width
|
123 |
+
}
|
124 |
+
data_inf = pd.DataFrame([data_inf])
|
125 |
+
if submitted:
|
126 |
+
# Predict using Logistic Regression
|
127 |
+
y_pred_inf = model.predict(data_inf)
|
128 |
+
st.write('## Iris Variety = '+ str(y_pred_inf))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|