import streamlit as st import json from utils import load_and_process_data, create_time_series_plot, display_statistics, call_api if 'api_token' not in st.session_state: st.session_state.api_token = "p2s8X9qL4zF7vN3mK6tR1bY5cA0wE3hJ" # Clear other states for key in ['current_file', 'json_data', 'api_response']: if key in st.session_state: del st.session_state[key] # Initialize session state variables if 'current_file' not in st.session_state: st.session_state.current_file = None if 'json_data' not in st.session_state: st.session_state.json_data = None if 'api_response' not in st.session_state: st.session_state.api_response = None st.title("Non-Intrusive Load Monitoring (NILM) Analysis") st.markdown(""" This service provides detailed breakdown of energy consumption by analyzing aggregate power measurements. ### Features - Appliance-level energy consumption breakdown - Load pattern identification - Device usage analysis - Detailed consumption insights """) # File upload and processing uploaded_file = st.file_uploader("Upload JSON file", type=['json']) if uploaded_file: try: file_contents = uploaded_file.read() st.session_state.current_file = file_contents st.session_state.json_data = json.loads(file_contents) dfs = load_and_process_data(st.session_state.json_data) if dfs: st.header("Input Data") tabs = st.tabs(["Visualization", "Raw JSON", "Statistics"]) with tabs[0]: for unit, df in dfs.items(): st.plotly_chart(create_time_series_plot(df, unit), use_container_width=True) with tabs[1]: st.json(st.session_state.json_data) with tabs[2]: display_statistics(dfs) if st.button("Run NILM Analysis"): if not st.session_state.api_token: st.error("Please enter your API token in the sidebar first.") else: with st.spinner("Performing NILM analysis..."): st.session_state.api_response = call_api( st.session_state.current_file, st.session_state.api_token, "inference_nilm" ) except Exception as e: st.error(f"Error processing file: {str(e)}") # Display API results if st.session_state.api_response: st.header("NILM Analysis Results") tabs = st.tabs(["Visualization", "Raw JSON", "Statistics"]) with tabs[0]: response_dfs = load_and_process_data( st.session_state.api_response, input_data=st.session_state.json_data ) if response_dfs: for unit, df in response_dfs.items(): st.plotly_chart(create_time_series_plot(df, unit), use_container_width=True) # Add appliance-specific visualizations st.subheader("Appliance-Level Breakdown") # Additional NILM-specific visualizations could be added here with tabs[1]: st.json(st.session_state.api_response) with tabs[2]: if response_dfs: display_statistics(response_dfs)